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Abstract. A new method for evaluating subtle changes in biomedical signals, caused by external 

influences on the human organism, is proposed. The method is based on the analysis of chaoticness of 

the studied parameter, which is calculated in a sliding window along an array of observed values using 

different entropy estimations. A distinctive feature of the method is the transition from the calculated 

entropies to their mapping on the phase plane and estimation of the integral parameters of the obtained 

graphic image (the entropy phase portrait), in particular, the area of the convex hull. 

The diagnostic value of the proposed approach in the processing of real clinical data was 

demonstrated, obtained under conditions of increasing physical activity, coronary artery bypass surgery 

and intravenous drip infusion. 

Keywords: ECG; Heart rate; Phase portrait; Entropy. 

Introduction. Modern systems of medical diagnostics are often based on computer processing of 

physiological signals that are generated by the human organism in the course of its functioning. For 

example, an electrocardiogram (ECG), which carries information about changes in the electrical activity 

of the heart, has been one of the most accessible and widespread methods of functional diagnostics in 

cardiology for more than a hundred years. 

The rapid development of computer and information technology has laid the foundation for a new 

industry – computer electrocardiography. Certainly, digital electrocardiographs that support decision-
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making by a cardiologist facilitate the work of medical staff and shorten the time of obtaining the diagnosis 

results. 

At the same time, as experts note, computer implementation of traditional approaches to ECG 

processing in the time domain does not lead to the achievement of a more important goal – increasing the 

reliability of diagnostic results. In addition, experienced clinicians still prefer a visual interpretation of the 

ECG, not fully trusting computer algorithms, which sometimes lead to errors at the stage of measuring 

diagnostic features [1]. 

Doctors are guided not only by the values of diagnostic signs, but also take into account the general 

clinical picture and take "informal" decisions, relying on their previous experience and intuition while 

making a diagnosis. Therefore, in medical practice, cases where several experienced cardiologists interpret 

the same ECG in different ways are well known.  

Computer electrocardiography is based on formal algorithms for analyzing the deviations of ECG 

values from population norms. In this case, both gross and subtle deviations of the ECG form have 

diagnostic value. 

Gross deviations are a pathological (wide and deep) Q -wave, a significantly expanded QRS -

complex and a number of other ECG diagnostic signs, the analysis of which is not very difficult either in 

visual or in computer analysis of ECG. Significantly greater problems are caused by computer analysis of 

subtle signal changes such as alternation or symmetrization of the T -wave, which are almost invisible in 

the visual analysis of the ECG, but carry important diagnostic information. 

Scientists are constantly looking for new approaches to the analysis of subtle changes in the ECG-

signal. One such innovative approach is phasegraphy, which is based on the transition from a scalar signal 

)(tz  in any of the leads to its processing on the phase plane )(),( tztz  , where )(tz – is assessment of the rate 

of change of heart electrical activity [2]. 

It should be emphasized that such an approach fundamentally distinguishes a phasegraphy from 

analogous methods [3], based on the reflection signal in a plane with coordinates )(),( tztz , where  – 

is time log. This difference allowed expanding the system of ECG diagnostic features, based on the 

evaluation of the speed characteristics of the process, and thereby improving the sensitivity and specificity 

of ECG diagnostics.  

The phasegraphy method is implemented in the domestic portable complex FAZAGRAPH®, which 

provided a reliable determination of the T  parameter that describes the symmetry of the repolarization 

section of the averaged phase trajectory [4]. Clinical studies have confirmed that the T  parameter, which 

until recently was underestimated by physicians in the analysis of ECG, carries important diagnostic 

information on the initial signs of ischemic changes in the myocardium [5,6]. 
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The interpretive possibilities of the phasegraphy are constantly expanding. Recently, for studying 

the dynamics of complex biomedical systems behavior, the methods of synergetics and the theory of 

dynamic chaos have become popular [7]. Thanks to synergetics, it was possible to move on to understanding 

how in open chaotic systems ordered structures appear spontaneously as a result of nonlinear processes. For 

example, in [8] carried out the study of the researching some aspects of human bioelectrical activity from 

the deterministic chaos positions. 

According to [9], not only the entropy itself but also the nature of its change in time has important 

information about the system properties. Based on the analysis of the entropy changing form, Anishchenko 

[10] found gender differences in the body's response to stressful environmental influences. In [11] a number 

of interesting results were obtained using the entropy method in a complex assessment of cardiovascular 

risk factors dynamics. 

The composition of the phasegraphy includes an additional software module that provides an 

estimation of the chaotic ECG parameters [12]. Further development of the entropy approach for the analysis 

of the chaotic ECGs and other biomedical signals will provide additional information in assessing the subtle 

changes in the signal caused by external influences on the body (physical activity, drug therapy, surgical 

intervention, etc.), which means that it is an actual task both in scientific and applied importance. 

The purpose of the article is to develop a new method for analyzing subtle ECG-signal changes 

based on sliding entropy in phase coordinates and practical testing of the method on clinical data. 

 

Materials and Methods. Let the )(tz  be ECG-signal, observed at discrete instants of time  ktk

, Kk ,..,1  be represented by a finite sequence of individual cycles )(1 kz , )(2 kz , …, )(kzM , where   – 

is the quantization step in time, M  – is the total number of cycles. 

Following [13], we approximate each m th )(kzm  cycle by some ),...,,( 1 Gk   function specified 

up to a finite number of unknown parameters G ,...,1 . To determine the optimal values of these parameters, 

we use the criterion of the minimum sum of deviations squares 
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where mK  is the number of discrete samples )(tz  on the m th cycle. 
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In this case, each separate cycle )(kzm
 represents a point (vector) ),...,( 1 Gmmm 


  in the G -

dimensional parameter space, and the sequence of observable cycles )(1 kz , )(2 kz , …, )(kzm
 generates in 

this space a phase trajectory that uniquely corresponds to the observed signal )(tz . 

As a function that describes with reasonable accuracy the cycles of real ECGs, we will use the sum 

of asymmetric Gaussian functions 
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in which the parameters A  and   determine the values of the amplitudes and instants of time, when the 

 th fragment assumes extreme values, and the function )(kb  is determined by the expression 
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Under the 
)2()1(

  bb  function (3) makes it possible to describe asymmetrical fragments, in particular, 

an asymmetric T -wave, if )2()1(

TT bb  . 

Thus, the  th informative fragment },,,,,{ TSTSRQP  of the ECG cycle can be represented by 

only four parameters A ,  , )2()1( ,  bb , and each m th cycle can be represented by a point in the 24-

dimensional parameter space, i.e. vector 
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Since the Gaussian function is mainly concentrated on the 3-sigma interval, it is legitimate to assume 

that the moments of the beginning )1(

t  and the ending )2(

t of each  th fragment of the ECG are related to 

the parameters )1(

 , )2(

  and 
  as follows: 

 

 

)1()1( 3  t ,                                                              (5) 

)2()2( 3  t .                                                             (6) 

 

 

It follows that the main ECG diagnostic parameters, including an additional T  parameter of the 

repolarization section symmetry, can be calculated using the ratios given in Table 1. 

Experimental studies have shown [14] that even with a high level of interference, the error in 

estimating these real ECG parameters of various shapes do not exceed 1 %. 

 

 

Table 1  

Calculation formulas of diagnostic parameters 

Parameters Calculation formulas 

Q -wave duration )(3 )2()1()1()2(

QQQQQ tt 


 

PQ -interval duration )(3 )1()1()1()1(

QpPQPQPQ tt 


 

QT -interval duration )(3 )2()1()1()2(

TQQTQTQT tt 


 

QRS -complex duration )(3 )2()1()1()2(

SQQSQSQRS tt 


 

RR -interval duration ]1[][  mm RRRR ,   2m  

Q -wave depth QA  

ST -segment displacement STA  

T -wave amplitude TA  

T -wave symmetry )1(

)2(

T

T
T




  
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The theory of chaos and synergetics allows us to more fully reveal and analyze the mechanisms of 

living complex system functioning that combines features of order and disorder, certainty and uncertainty, 

organization and disorganization [7]. 

For an integrated assessment of the parameters chaotic dynamics during the ECG recording, the 

following method is proposed. 

 

 

MATHEMATICAL FOUNDATIONS OF THE PROPOSED METHOD 

It is needed to estimate the chaoticness of the time series  

 

 

Maaa ,...,, 21 ,                                                             (13) 

 

 

elements of which are sequences of any parameters values indicated in Table 1, for example, a sequence of 

RR -interval values or a sequence of parameter T  values from cycle to cycle. 

We divide the series (13) into L  consecutive windows containing W  points, in each l th window we 

estimate the chaoticness lH  of the explored parameter values and calculate the ratio of lH  to the elements 

chaoticness 1H  in the first window: 
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assuming, that 01 H . 

Any mathematical method for analyzing the chaoticness of dynamic series elements can be used to 

estimate lH . In particular, such estimation can be carried out on the basis of the Shannon entropy 

calculation 
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where jlp  – frequency of hitting the j th interval ],[  jjj aa , Jj ,...,1  of the time series values 

observed in the l th window. The thresholds 


jj aa ,  of the intervals j , including the alternating elements 

ia , determine a ratio 

 

 

)1(min  jaa ij ,     jaa ij  min ,          Jj ,...,1 ,                 (16) 

 

 

where   – specified threshold of insensitivity to changes in the parameter.      

The procedure (14) can be implemented by shifting the 1l th window towards l th at the width of 

window W  or when the windows are shifted by one point (sliding window mode). It is clear that in the 

second case the amount of computation required is greater, but the graph of entropy change will be smoother. 

In this case, the form of such graph depends on the width of the window W  and the threshold   (Fig. 1). 
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Fig.1. Sliding entropy graphs )(lh by estimation T  chaoticness: 

a: 100W pts., 1,0  un.;   b: 60W  pts., 04,0  un.;   c: 30W  pts., 02,0  un.;  
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For the integral chaotic estimation of the parameter during ECG observation, it is proposed to move 

from a series of discrete values )(lh calculated by the sliding window method to a phase portrait of entropy 

on the )(),( lhlh   plane, where )(lh  is an estimation of the first derivative of )(lh at the l th point.  

Despite the fact that the procedure of numerical differentiation of noisy data refers to an incorrectly 

posed mathematical problem, the application of special filtration and regularization procedures [15] made 

it possible to obtain acceptable estimates of the derivative )(lh . As a result, it is possible to build an evident 

graphic representation of the phase portrait entropy as points on the )(),( lhlh   plane (Fig. 2). 

 

 

 

),%(lh  

c/),%(lh  
 

Fig.2. Phase portrait of the T  sliding entropy (real ECG). 

 

 

It should be noted that the classical Shannon entropy (15) is invariant under the permutations of the 

elements in the window. For example, two sequences - regular  

0,1,0,1,0,1,0,1,0,1,0,1,0,1  

and chaotic 

1,0,1,1,1,0,1,1,0,0,0,0,1,0  

will have the same entropy values 1H . 

Therefore, for a deeper study of chaotic dynamics, it is possible to calculate permutation entropy [18] 

in each l th window, instead of estimation (15), which is based on the analysis of the characteristic patterns 

shape. 
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In order to realize this possibility, we modernized the well-known procedure of calculating the 

permutation entropy, and evaluated five classes of patterns using the three successive values of 
1тa , 

ma , 

1ma  of the time series (13) (Fig. 3). 

 

 

 

3  1  
2  4  5  

 

Fig.3. Five classes of modernized permutation entropy patterns. 

 

 

The permutation entropy is calculated by the formula 
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in which )( jp   is the frequency of the j th class pattern appearance in the l th window. 

Classes of patterns are uniquely determined by sequential test of the following conditions: 

class 1 , if ,)()( 11 haahaa mmmm     

class 2 , if ,)()( 11 haahaa mmmm    

class 3 , if ,)()()( 1111 haahaahaa mmmmmm    

class 4 , if ,)()()( 1111 haahaahaa mmmmmm     

class 5 , if none of the above relations holds, 

in which h  – is a given threshold of insensitivity to local changes in the signal. 

The phase portrait can also be constructed on the basis of the approximate entropy [21] calculation 

and other known chaotic estimations, a review of which is presented in [12]. 

Note that the entropy change rate is actively studied in thermodynamic systems [16]. Despite the fact 

that the question of the relationship between the thermodynamic Boltzmann entropy and the Shannon 
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entropy for the information processes description is still the subject of scientific discussions, such analogies 

are still useful. 

Relying on a number of fundamental ideas, contained in the papers of I.R. Prigogine [17], Y.L. 

Klimontovich [18], A.A. Khadartsev [19], A.A. Yashin [11], V.I. Shapovalov [9] and other scientists, it can 

be assumed that the shape of the entropy phase portrait and its "size" in the phase space carries additional 

information on the system-control capabilities of cardiohemodynamics. 

For an integral estimation of the dynamics of parameter chaoticness, let’s build in the normalized 

coordinates )(),( lhlh   the convex hull of the entropy phase portrait (Fig.5) and determine the area S  of the 

resulting polygon, as well as the coordinates of the phase portrait gravity center X , Y .  

Under certain conditions, there is an unambiguous connection between the Shannon entropy and the 

standard deviation (RMS). For example, with a normal distribution of the random variable, which generating 

the series (13), this connection can be described by the logarithmic dependence 

.          2log05,2 H RMS.                                                    (18) 

Hence, it would seem that the results of the dynamic series variability analysis (13) will be equivalent 

if in the sliding windows, instead of entropy (15), calculate the RMS of the observed values.  

 

 

                

),%(lh  

c/),%(lh   

YX ,  S  

 

Fig.5. The phase portrait of the sliding entropy (left) and its convex hull (right). 

 

 

At the same time, entropy, unlike RMS, does not depend on the values of the observed magnitude and 

therefore characterizes not so much the spread but the diversity of this quantity values [22]. Therefore, 

processing the real data will bring different results. 

Fig. 6 shows graphs of Shannon entropy H  and RMS change calculated by the same sequence of RR

-interval. 
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Fig.6. Graphs of entropy change H  and standard deviation (RMS). 

 

 

Let’s consider the results demonstrating on the clinical data the possibility of the phasegraphy method 

for the subtle ECG changes analysis under various effects on the organism, including additional possibilities 

for analyzing the phase portrait of entropy (EPP).  

Results. Table 2 presents the results obtained during the testing a conditionally healthy volunteer for 

44 years old on a treadmill. During testing, the speed of the belt reached 5.5 km/h, and the angle of 

inclination gradually increased to 14 %, which in the second stage ensured the metabolic equivalent MET 

= 10.2. After that, the test person rested for 3 minutes. 

In the process of increasing the stress, the indicator SDNN  (RMS of the RR -interval) decreased by 

66 % (Fig. 7), which agrees with the known data on the increase in the sympathetic part of the autonomic 

nervous system under stress [23]. Simultaneously with the decrease in heart rate variability, the integral 

index RRS , which, unlike SDNN , characterizes not the degree of dispersion, but the variety of RR -interval, 

increased by 60 %. 

It can be assumed that the detected fact testifies that the healthy organism searches the most 

economical way for the heart rhythm regulation. Of course, such a hypothesis requires further studies. 

Two other integral parameters characterizing the variability (RMS T ) and the variety ( T
S
 ) of the T

-wave symmetry values with increasing stress and rest were unidirectional (Fig. 8). At the same time, the 

changes in the integral index T
S
  at the first stage of the stress were more pronounced than the changes in 

the RMS T , but on the rest stage, the changes in the RMS T  were more pronounced. The observed effect 

also requires additional study. 
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Table 2  

Dynamics of changes in integral parameters for a treadmill test 

# Stage МЕТ 
CONVEX HULLS EPP INTEGRAL 

PARAMETERS R-R interval T  parameter 

1 2 3 4 5 6 

0 Baseline 1 

  

RRS  = 0.497 un. 

RRX =0.576 un. 

RRY =0.606 un. 

TS = 0.217 un. 

TX  =0.682 un. 

TY =0.831 un. 

SDNN=58 ms 

СКО T =0.02 un. 

1 
Stress 

3 min. 
2.3 

  

RRS  = 0.617 un. 

RRX =0.507 un. 

RRY =0.521 un. 

T
S


= 0.569 un. 

T
X


=0.496 un. 

T
Y


=0.751 un. 

SDNN=32 ms 

СКО T =0.04 un. 

2 
Stress 15 

min. 
10.2 

  

RRS  = 0.794 un. 

RRX =0.5 un. 

RRY = 0.504 un. 

T
S
 = 0.749 un. 

T
X

 =0.522 un. 

T
Y
 =0.524 un. 

SDNN=20 ms 

СКО T =0.09 un. 
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1 2 3 4 5 6 

3 

Rest 

3 min. 

 

- 

  

RRS  = 0.716 un. 

RRX =0.561 un. 

RRY = 0.55 un. 

T
S


= 0.58 un. 

T
X


=0.52 un. 

T
Y


= 0.376 un. 

SDNN=92 ms 

СКО T =0.08 un. 

 

 

 
 

 

RRS  

%  

SDNN  

 

Fig.7. Dynamics of changes in the integral parameters of the heart rate 

 

 

 

%  

TS  

T CKO  

 

Fig.8. Dynamics of changes in the integral parameters of T -wave symmetry 
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Interesting results were obtained in the study of subtle ECG changes in patients with CAD whom 

coronary artery bypass surgery (CABG) was performed. Fig.9 shows the dynamics of the T  parameter 

before and after the operative treatment of the patient M. 60 years old, owing to the lesion of the coronary 

arteries, three shunts were established. 

 

 

 

Before surgery 

1-th day 
7-th day 

T  

 

Fig.9. Dynamics of the T  parameter before and after CABG surgery 

 

 

The day before the surgery, the T -wave symmetry parameter was equal 6.1T  units, which was 

60 % higher than the lower limit of pathological values ( 05.1T  units). On the first day after the surgery, 

the T  values were normalized ( 9.0T  units), which indicates a blood flow restoration. On the 7th day 

after the surgery, the value of the parameter even more closely approached the norm and reached 8.0T  

units, which is 50 % lower than the pathological value before the surgery. The patient successfully 

underwent the rehabilitation period and was discharged one week after the surgery. 

It is noteworthy that against the background of the normalization of the T  parameter, the dynamics 

of the entropy phase portraits were observed, which were constructed for the RR -interval and T  parameter 

(Table 3). Already on the first day after the surgery, the EPP area RRS  of the convex hull of the RR -interval 

increased by almost 82 %, and the EPP area TS  of the convex hull T  parameter increased by 2.4 %. 

The detected properties indicate the possibility of using the phasegraphy method for evaluating 

subtle ECG changes before and after surgery and predicting the outcome of treatment. 
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Table 3  

Dynamics of EPP before and after coronary artery bypass surgery (CABG) 

RR - 

interval 

EPP 

 

BEFORE SURGERY 1 DAY AFTER SURGERY 

 

RRS  = 0.431 units 

 

RRS  = 0.784 units 

T  

parameter 

EPP 

 

TS = 0.535 units 

 

T
S


= 0.548 units 

 

 

Many medications, including those used in cardiac practice, quite often (from 30 to 70 %) have side 

effects [24]. Therefore, the actual task is to assess the possibilities of phasegraphy in the analysis of subtle 

ECG changes directly in the process of intravenous therapy. 

Table 4 shows the dynamics of changes in the parameters that were observed on the patient I. ECG 

(76 years old) in the process of intravenous therapy of Panangin and Mexicor medications. 
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Table 4  

Dynamics of ECG parameters during the first dropper 

Time AVERAGE CYCLE 
ECG PHASE  

PORTRAIT 

EPP convex hull of the 

T  parameter 

15 

min. 

 

T = 0.65 units 

 

TA = 0.44 mV. 

 

T
S


= 0.764 units 

25 

min. 

 

T = 0.71 units 

 

TA = 0.29 mV. 

 

T
S


= 0.754 units 

40 

min. 

 

T = 0.64 units 

 

TA = 0.28 mV. 

 

T
S
 = 0.744 units 

 

 

During the entire period of drug administration, the T -wave symmetry parameter was within the 

normal range: 014.0653.0 T units. The EPP area of the T  parameter was stable: 

016.0743.0 TS  units. 

Two days later the patient was repeatedly treated with the same drugs (Table 5). 
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Table 5  

Dynamics of ECG parameters during the second dropper 

Time AVERAGE CYCLE 
ECG PHASE  

PORTRAIT 

EPP convex hull of the 

T  parameter 

5  

min. 

 

T = 0.61 units 

 

TA = 0.52 mV. 

 

TS = 0.73 units 

10 

min. 

 

T = 0.65 units 

 

TA = 0.44 mV. 

 

T
S


= 0.697 units 

20 

min. 

 

T = 0.66 units 

 

TA = 0.38 mV. 

 

T
S


= 0.677 units 

30 

min. 

 

 

T = 0.63 units 

 

TA = 0.47 mV. 

 

T
S
 = 0.65 units 
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During the second dropper, the T -wave symmetry was also within the normal range: 

006.0604.0 T  units. However, noticeable changes in the shape of the average cycle were observed. 

These changes are caused by a 36 % increase of the T-wave amplitude, which exceeded the R -wave 

amplitude and led to characteristic changes in the ECG phase portrait shape. 

Interestingly, that the increase in T -wave amplitude, which is likely to be associated with 

hyperkalemia from excessive administration of potassium preparations, was accompanied by a monotonous 

decrease in the EPP area 
T

S


 of the T  parameter by almost 11 %, i.е. decreasing T -wave form diversity 

from cycle to cycle. 

A serious manifestation of cardiovascular diseases is sudden cardiac death, where a patient dies 

almost instantly (from a few seconds to an hour) after the onset of a heart attack. One of the sudden cardiac 

death predictors, which has recently gained wide popularity in clinical studies, is based on the detection of 

the electrical alternation of the heart, which on the ECG is manifested by the elements alternation, for 

example, in alternating RR -interval of different duration. 

Computer analysis of the alternation becomes an important characteristic of modern medical 

diagnostic systems. Currently, according to experts, existing computer algorithms do not provide the 

required reliability of detection of this effect in real clinical conditions. 

We will show that the proposed method makes it possible to detect subtle changes in the signal 

caused by the cardiac alternation effect and to distinguish such changes from externally similar 

microvibrations of ECG elements not related to this effect. 

Fig.10 shows the ECGs of two patients who have changes in the duration of the RR -interval. One 

of the ECGs belongs to a conditionally healthy man of 32 years old, the second ECG belongs to a woman 

of 68 years old, and who has the heart electrical alternation. 
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Fig.10. Real ECGs of a conditionally healthy patient (above) and  

a patient with an RR -interval alternation (below) 

 

 

As you can see, the ECGs practically do not differ in the signal form. Despite this, differences in 

rhythm are clearly visible on the rhythmograms (Fig. 11), which are based on these ECGs. Note that the 

values of the traditional statistical parameter of heart rate variability calculated by these rhythmograms are 

quite close: in a healthy patient SDNN  = 50 ms, and in a patient with an alternation SDNN  = 62 ms. 
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Fig.11. Real rhythmograms of a conditionally healthy patient (above) and  

a patient with an RR -interval alternation (below) 

 

 

Analysis of the convex hulls area of the RR -interval entropy phase portrait was made to detect 

electrical alternation of the heart. In this case, in order to construct the EPP in (14) was used expression 

(17), instead of (15), providing an estimation of elements chaoticness in sliding windows on the basis of 

permutation entropy calculation. The results are shown in Table 6. 
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Table 6  

Results of permutation entropy phase portraits analysis 

Rhythmogram without RR -interval 

alternation 

Rhythmogram with RR -interval 

alternation 

  

RRS  = 0.637 units 

RRX = 0.363 units; RRY = 0.466 units 

RRS = 0.165 units 

RRX = 0.279 units; RRY = 0.28 units 

 

 

As can be seen from Table 6, on the rhythmogram with electric alternation, the area of the convex 

phase portrait hull of the RR -interval permutation entropy was almost 4 times less than on the healthy 

patient rhythmogram, although both rhythmograms had similar RR -interval mean square deviations 

(traditional SDNN  parameter). 

Thus, the change in the integral RRS  parameter carries important diagnostic information about the 

reduction of the chaotic heart rhythm, which caused by the heart electrical alternation. Significantly changed 

the other two integral EPP parameters: a decrease of RRX  by 23.1 % and RRY  by 39.9 %. 

The analysis of integral parameters of the phase portrait of permutational entropy can give important 

information in the differential diagnosis of other cardiac rhythm disturbances, which will be the subject of 

our further research. 

Conclusion. The article shows that the area of the phase portrait of entropy, calculated in sliding 

windows according to the heart rate and symmetry of the T-wave on consecutive cycles of the 

electrocardiogram, carries important information on the subtle changes in the ECG-signal caused by external 

effects on the body (treadmill test, drug and surgical treatment of cardiac patients) and can be used as an 

integral diagnostic parameter. 

It is also shown that, based on the calculation of the area of the permutation entropy phase portrait, 

it is possible to reliably detect the effect of the electrical alternation of the heart on real signals that are 
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externally virtually indistinguishable from similar signals of a healthy person. This fact allows us to 

construct a threshold decision rule for assessing the risk of sudden cardiac death. 

The received encouraging results after confirmation of their statistical reliability on representative 

samples of observations open new possibilities of medical diagnostics in cardiology.  
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