NPOBJIEMU IHOOPMALINHUX TEXHONOT IV

IMPLEMENTATION AND TESTING OF HASH FUNCTION
BASED ON MODIFIED SKEIN ALGORITHM

UDC004.021

DOI: https://doi.org/10.35546/2313-0687.2018.24.16-25

BARYBIN Oleksii
candidate of science (technic), Head of the Department of Radiophysics and Cybersecurity, Vasyl’ Stus Donetsk National University, Vinnytsia.
E-mail: o.barybin@donnu.edu.ua. ORCID ID: 0000-0002-0897-4454.

TKACHENKO Vira
candidate of science (physics and mathematics), associate professor, associate professor of the department of general physics and didactics of
physics, Donetsk national university of the name of Vasyl’ Stus, Vinnitsa. E-mail: v.tkachenko@donnu.edu.ua. ORCID ID: 0000-0001-6064-5474.

ZHABSKA Yelyzaveta

master’s program student of specialty 122 Computer Science, Vasyl’ Stus Donetsk National University, Vinnytsia.
E-mail: jabska.e@donnu.edu.ua. ORCID ID: 0000-0002-9917-3723.

PETROVA Iryna
masters program student of specialty 122 Computer Science, Vasyl’ Stus Donetsk National University, Vinnytsia.
E-mail: petrova.i@donnu.edu.ua. ORCID ID: 0000-0001-6870-7502.

Abstract. Context and objective. The article shows that the original Skein hash algorithm, which was developed as part
of the competition for the new standard SHA-3 of the National Institute of Standards and Technology USA (NIST) and was
one of five finalists can be modified to improve its operation efficiency in systems with multicore processors, which are used
in almost all modern desktop and mobile devices. Analysis of the few publications that dedicated to such improvement of
the original algorithm shows that all the authors focus on improving efficiency by optimizing the algorithm computations
parallelization because computing speed was one of its main weaknesses. The simplification the original algorithm was not
considered before and became the main purpose of the article.

Research methods. Analysis of the original algorithm showed that the basic premise for the modifications is flexibility
for adjusting to build a hash function, particularly hash function is based on block encryption algorithm with adjustable
block size. Block size and key are fixed, but they do not determine the size of the original hash function string, which com-
plicates the method of attack, based on finding the key length. Alternating nature of the output line allows you to make
hash function very flexible: it is possible to use a hash function and applications in devices with limited memory. Including
mobile devices.

16

#24(2018)

Results. Modification for Skein based on the fact that the original algorithm is assumed that the hash process can be
represented as a multilevel tree structure. The basic idea is that the message on the first hashing level is divided into blocks,
for each of the blocks calculated parameters for the second and higher levels become the input values for the next level.
A significant simplification has been proposed no speed up the algorithm — use the only single-level hash that actually
means abandoning the use of tree structure calculations.

Hash function based on the modified algorithm is implemented with the use of the programming language Python.
Test results according to NIST SP 800-22 standard for set of 1,000 files with hash function results showed the percentage of
files that have been tested successfully from 98.0 to 99.6% that indicates that the hash function under consideration meets
random and pseudorandom generator integers and hash functions conditions.

The scientific novelty and practical significance. It is the first time then simplification of the structure for Skein hash al-
gorithm calculations effectiveness improvement was proposed and it was shown that the hash function based on a simpli-
fied algorithm comply NIST SP 800-22.

Keywords: hash functions, Skein, statistical methods of analysis of hash functions.

Introduction. indicated that the choice was extremely difficult and each
Cryptographic hash function is an essential and common of the finalists had their advantages and disadvantages.
tool used to perform a variety of tasks: authentication, verifi- ~ Accordingly, each of the abovementioned algorithms can
cation of data integrity, file protection, generation of associa- be used for further development and implementation.
tive arrays, finding duplication in a series of data sets, gener- Based on experts prediction [5] fourth generation hash
ation of unique identifiers for data sets etc. Hash functionisa algorithms is not expected until 2030, but the issue of
function that converts the arbitrary input data set to the implementation and testing of existing hash functions and
output fixed size bit length string. The latter and simplicity of their modifications is a topical research direction.
hash functions calculation are of their two main practical Skein is one of the promising hash algorithms and as
advantages. There are developed many hash algorithms with ~ mentioned earlier in 2010 was in the top five in the compe-
different properties (bit, computational complexity, crypto- tition NIST [6]. The main feature of this algorithm is to
graphical secure etc.). The best-known algorithms to obtain obtain optimal performance when working with critical
hash values are MD5, SHA, RIPEMD, TIGER [1]. applications that require customized implementations
In general, hash algorithms are such that it is almost efficiently on multicore processors. Given the fact that
impossible to find two messages with the same hash value. almost all modern computer systems are equipped with
But it is impossible to completely avoid this, because it can such processors the generation and study of the Skein
results in collisions that denotes to forming the same algorithm modifications are promising.
strings as a result of hash functions with different input Studies on the implementation of the Skein algorithm
data [1]. In the early 2000s the cryptanalysts revealed the was carried out in most cases in the areas of its computa-
possibility of collision in such algorithms as MD4, MD5, and tion parallelization. Specifically, the authors [2] created a
SHA-0 [2, 3]. Moreover, in is known the published method separate thread for each branch of calculations and
for finding collisions using SHA-1 algorithm. showed that the effectiveness of the algorithm imple-
Even though the new generation of standardized SHA-2 mentation in Java and C did not differ. The authors of [7]
hash algorithms was ready to replace SHA-1, in late 2007 showed that it is possible to effectively calculate the hash
NIST decided to start a 4-year global process of developing value by parallelization of computations using a special
a new hash algorithm, so called Standard SHA-3, which was tool «PLUTO». In general, in [5] it was indicated that in
developed through public competition [4]. In 2010 the 5 the implementation of this algorithm computation speed
finalists were determined: BLAKE, Grostl, JH, Keccak and ~ was one of its main weaknesses. As seen from the above
Skein. The results of a comparative analysis of the proposed ~ works the authors did not consider the possibility of im-
algorithms can be found, for example, in [5, 6]. Keccak proving performance by simplifying the implementation
algorithm was chosen for the new standard and in [6] itis of the original algorithm.

17

NPOBJEMW IHOOPMALIMHX TEXHONOT I

The objective of the study. o Threefish. Threefish is the tweakable block cipher
Consider all the above mentioned, the objective of at the core of Skein, defined with a 256-,512-, and 1024-bit
the article is to propose, implement and verify modifica- block size.

tion for Skein algorithm. To achieve the objective fol- e Unique Block Iteration (UBI). UBI is a chaining
lowing scientific and technological tasks must be set- mode that uses Threefish to build a compression function
tled: that maps an arbitrary input size to a fixed output size.

- proposals generation for Skein algorithm modifica- e Optional Argument System. This allows Skein to
tions, which should be based on consideration of the prin- support a variety of optional features without imposing any
ciples of its construction; overhead on implementations and applications that do not use

- software implementation for hash function based on the features. An extra set of arguments allows Skein maintain
the modified algorithm; a set of additional features that allow you to use not only as

- testing the implemented hash function. Skein hash function (such as encryption algorithm) without

Modified Skein hash function algorithm. significant changes in the source code implementation.

The general structure of the Skein algorithm. Principles UBI and Threefish are independent and can be used
of this algorithm, its structure, analysis of its cryptographic separately.
security are described in detail in [5, 6, 8-11], so let’s con- When used as a hash function, the message type is the
sider only general information. only optional input type used. The output of configuration

Skein main advantage is that it provides an opportunity ~ UBI becomes a precomputed initial chaining value. This is
to build a hash function with parameters that can be ad- the simplest use of Skein. With the variable output size it
justed. Hash function is based on block encryption algo- becomes a drop-in replacement for almost any existing
rithm with adjustable block size. Block size and key are hash function.

fixed, but they do not determine the size of the hash func- Algorithm modification. To simplify the original algo-
tion output string, which complicates the attack methods rithm, consider some functions in more detail.
based on finding the key length. Alternating the output Tweak function is presented as a description of individual

string allows you to make hash function very flexible: it is ~ components-bytes in original algorithm. It was designed as an
possible to use a hash function in devices with limited auxiliary one for the values generation, which is formed as a

memory, including mobile devices. unique unit for each 128-bit string. Tweak Fields indicated in
Skein has three components [8]: Fig. 1[5], and their description specified in Table 1.
128 120 112 96 [0
V
’ " Type ‘ TreeLevel reserved Position
t First | BitPad ¢
Final

Figure 1 - The fields in the Tweak value

Tweak function takes as input the original message, hash The basic idea is that the first level hash message is divided
tree level, type of Tweak and value lists for the respective into blocks, each block is calculated from UBI, on the second
blocks which are converted into binary form. Based on this and higher levels of UBI the values are used as input pa-
input parameters a string to be form in the manner specified rameters. Block size and number of required levels specified
in Fig. 1. The following string is converted to decimal form. in Tweak and Configuration_string function, which is de-
The function returns the number in decimal form. scribed below.

In the original algorithm it is assumed that the hashing Implementers of tree hashing have a number of decisions
process can be represented as a multilevel tree structure. to make. There are three parameters to choose: the leaf node

18

24 (2018)

size, the fan-out, and the maximum tree height. For efficien-
¢y, a larger leaf node size and fan-out is better; it reduces the
number of nodes and thus the overhead. But large leaf nodes
and high fan-out make some uses less efficient.

To speed up the algorithm a significant simplification
has been proposed — use only single-level hashing that
actually means abandoning the use of tree structure calcu-
lations.

Table 1
The fields in the Tweak value
Name Position Description
Position 0- 95 bits The number of bytes in the string processed so far (including this block)
Reserved 96-111 bits Reserved for future use, must be zero
TreeLevel 112-118 bits | Level in the hash tree, zero for non-tree computations
BitPad 119 bit Set if this block contains the |a§t byte of an input whose length was not an inte-
gral number of bytes. 0 otherwise.
Type 120-125 bits | Type of Tweak (key, block configuration, messages, etc.)
First 126 bit Set for the first block of a UBI compression
Final 127 bit Set for the last block of a UBI compression

Configuration_string function in original algorithm is
presented as a description of individual components-bytes.
It was designed as an auxiliary for the formation of values

string configuration. According to the proposed modifica-
tion of certain bytes are assigned fixed value (see last col-
umn of Table. 2).

Tabnuys 2
The Fields in the configuration value
Offset The number of Name Description Descri.pti(')n modi-
bytes fications
0 4 Schema identi fi er Constant -
4 2 Version number - -
6 2 Reserved Reserved bytes filled with zeros -
Converted to bytes additional
8 8 Output length parameter ToBytes, defines the -
desired length of hash sum
16 1 Tree leaf size enc. Size of tree leaf zero
17 1 Tree fan-out enc. Tree branching zero
18 1 Max. tree height The maximum level of the tree zero
19 13 Reserved Reserved bytes filled with zeros -

An implementer that needs the hash function to pro-
cess data at a very high data rate can use a leaf node size of
a few kilobytes and a maximum tree height of 2. This al-
lows multiple processors to each work on its own leaf node,
with one processor doing the second level of the tree. In-
creasing the leaf node size makes this more efficient, but it
increases the amount of memory needed for buffering, and
will tend to increase latency.

19

Limiting the tree height is useful when memory-limited
devices are involved. When computing a tree hash incre-
mentally, the implementation must store data for each
level of the tree. Limiting the tree height allows a fixed
allocation of memory for small devices.

Thus, modifications of the algorithm consist of two
simplifications:

- abandoning the use of multi-level hashing,

NPOBJEMW IHOOPMALIVHX TEXHONOT I

- several bytes in Tweak and Configuration_string have
fixed values and do not depend on the size of the incoming
message.

Software implementation of hash function based on the
modified algorithm. The above-mentioned changes are
implemented using software programming language Py-
thon. Graphical interface was created that allowed to
choose a text file with message, for which the hash function
value was calculated. Hash result is displayed in a separate
GUIfield and recorded in a separate file.

Preliminary analysis of hash function execution indi-
cates that changing even one character in the initial report
led to changes in the value of the final sequence, which is
one of the requirements for hash functions in general.

Complete performance testing for modified algorithm
has at least two stages:

1. Compliance Testing for statistical input and output
data applicable to cryptographic hash functions. This must
be done because simplification could lead to malfunction of
the algorithm.

2. Implementation effectiveness testing. In particular,
calculation speed comparison with known counterparts.
This phase will be conducted in a separate study, because it
is time-consuming, as can be seen, for example, in [12, 13].

Compliance Testing for statistical input and out-
put data.

Hash function assessment methodology. The NIST STS
800-22 tests package. The basis for the software implemen-
tation of statistical tests in this work is NIST SP 800-22
«A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications» [14].

NIST SP 800-22 highlights aspects of selection and
testing of random and pseudorandom generators for
integers and hash functions. It was suggested during the
competition for the new US national standard block en-
cryption which was used for the analysis of statistical
properties of the candidates for the new block cipher. Test
suite contains 15 statistical tests that are designed to test
the hypothesis of randomness for binary sequences of any
length. All tests are focused on detecting various defects
of randomness.

Files from the NIST SP 800-22 with a programming code
can be found at NIST web-site. This code is written in the
programming language Cand in [15] observed its following
imperfections:

1. Incorrect implementation of the statistical test suite.
Because test suit was compiled during testing without any
revisions in the source code and was tested on reference
sequences that were delivered with the test, it does not
guarantee the absence of errors and impropriety in the
code. During testing process there were error messages
associated with the release of calculated values beyond
significance limit. Although these errors were observed
only in some samples (usually low accuracy calculations),
they could in some way influence the overall test results.

2. Incorrect programming code implementation. Alt-
hough the authors of the studies were carried fullest extent
to study the reliability and reproducibility of research re-
sults relevant for code, it does not exclude errors in the code
(for example, relating to incorrect alignment of data types)
that lead to distortion and deterioration for test results.

3. Imperfection of statistical methods. Statistical methods
imperfection include the preposition that sequence under
analyzes considered to be the general sample from which the
user must select a partial sample. In some cases, partial sample
properties differ from those of a general sample.

4. The use of tests for hash functions has its own specif-
ic. Tests that have been developed are used for binary se-
quences, while the majority of hash functions calculate
hash in hexadecimal, octal and other numerical systems.
Changing the number system can affect statistics for input
sequence.

Because of the above-mentioned drawbacks the im-
plementation of selected tests in the programming lan-
guage Python became in this work a separate task and
among the 15 tests proposed by NIST 8 most often used
test were chosen for the implementation to study hash
function under consideration. Thus, in this paper were
implemented the following tests:

1. The Frequency (Monobit) Test,

2. Frequency Test within a Block,

3. Tests for the Longest-Run-of-Ones in a Block,

4. The Linear Complexity Test,

5. The Serial Test,

6. The Approximate Entropy Test,

7. The Cumulative Sums Test,

8. The Cumulative Cusums Test.

For some tests implemented in the suite, it was as-
sumed that the size of the sequence length n is large (on
the order of 10° to 107). For such a large sample were ap-

20

#24(2018)

plied asymptotic methods. Most tests can be used for
smaller values of n. However, when applying for smaller
values of n asymptotic methods would be unacceptable and
they should be replaced exact distributions that are usually
difficult to calculate.

Hash function test results. To assess the quality Skein-
based hash functions a sample of 1000 files containing the
results of hashing was tested.

Test binary matrices test and Maurer statistical test
were not used for testing, since the minimum length of
input sequences for these tests to be 38,912 bits and
387840 bits, respectively, and estimation of the time re-
quired to execute these tests showed significant duration.

Test results indicate the almost complete absence of
deviation for sequences which were generated by simpli-
fied version of Skein hash function.

Table 3
Hash function testing results
The percentage of files that have
Type of test passed the test
The Frequency (Monobit) Test 98,6%
Frequency Test within a Block 99,6%
Tests for the Longest-Run-of-Ones in a Block 98,9%
The Linear Complexity Test 98,4%
The Serial Test 98,1%
The Approximate Entropy Test 98,0%
The Cumulative Sums Test 99,4%
The Cumulative Cusums Test 99,3%

Conclusions.

Further development of algorithms for hash functions
associates with both the generation of new and improve-
ment of existing algorithms.

It is shown that the Skein algorithm is one of the algo-
rithms on which basis high quality hash functions can be
build, and further development of the implementation
feasibility for this algorithm lay in simplification of some
features that make up the structure of the original algo-
rithm. In particular, the following simplifications were
proposed in this work:

- abandoning the use of multi-level hashing,

- several bytes in Tweak and Configuration_string have
fixed values and do not depend on the size of the incoming
message.

REFERENCES:

The first phase of implemented hash function testing was
performed by analyzing statistical input and output data
applicable to cryptographic hash functions. In particular NIST
SP 800-22 «A Statistical Test Suite for Random and Pseu-
dorandom Number Generators for Cryptographic Applica-
tions» from NIST was used. To elude some shortcomings of
program implementation for these tests proposed by NIST in
the programming language C in this work software imple-
mentation has been established using language Python.

The testing results for set of 1,000 files with hash func-
tion results showed the percentage of files that have been
tested successfully from 98.0 to 99.6% that indicates that
the hash function under consideration meets random and
pseudorandom generator integers and hash functions
conditions.

1. Keith, M. M. (2017). Everyday Cryptography. Fundamental Principles and Applications. Craydon : Oxford University Press, 773.

2. Atighehchi, K., Enache, A., Muntean, T., Risterucci, G. (2010). An Efficient Parallel Algorithm For Skein Hash Functions. Innsbruck, Austria:
Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems, 1-11.

3. Bahi, J. M., Couchot, J. F., Guyeux, C. (2012). Quality Analysis of a Chaotic Proven Keyed Hash Function. International Journal On Advances in

Internet Technology, 5(1), 26-33.

10.

11.

12.

13.

14.

15.

NPOBJIEMU IHOOPMALIMHUX TEXHONOT I

Hadedy, M. El., Gligoroski, D., Knapskog, S. J., Margala, M. (2010). Compact Implementation of BLUE MIDNIGHT WISH-256 Hash Function on
Xilinx FPGA Platform. Journal of Information Assurance and Security, 5, 626-636.

Al-shaikhli, 1. F., Alahmad, M. A., Munthir, K. (2013). Hash Function of Finalist SHA-3 : Analysis Study. International Journal of Advanced
Computer Science and Information Technology (IJACSIT), 2(2), 37-48.

Chang, S., Perlner, R., Burr, W. E., Turan, M. S., Kelsey, J. M., Paul, S., Bassham, L. E. (2012). Third-Round Report of the SHA-3 Cryptographic
Hash Algorithm Competition. NIST, 84.

Shivaprasad, S., Ramaswamy, A., Raviprasad, R.T., Sadanandam, M. (2016). Optimization of Skein Hash Function Using Pluto Tool. International
Journal of Applied Engineering Research. 11(5), 3624-3631.

.Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J. The Skein Hash Function Family. Retrieved from
http://www.skein-hash.info/sites/default/files/skein1.3.pdf.

Aumasson, J.-P., Calik, C., Meier, W., Ozen, 0., Phan, R. C-W., Vana, K. (2009). Improved Cryptanalysis of Skein. Tokyo, Japan: International
Conference on the Theory and Application of Cryptology and Information Security ASIACRYPT, 542-559.

Goldhamer, J. (2010). SHA-3 Submission: Skein Hash Function Family. Insight on skein hash function proposal. Retrieved from
https://koclab.cs.ucsh.edu/teaching/cren/project/2010/goldhamer.pdf.

Bellare, M., Kohno, T., Lucks, S., Ferguson, N., Schneier, B., Whiting, D., Callas, J., Walker, J. Provable Security Support for the Skein Hash Family.
Retrieved from http://www.skein-hash.info/sites/default/files/skein-proofs.pdf.

Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R. (2018). Finding Bugs in Cryptographic Hash Function Implementations. IEEE Transactions on
Reliability, 99, 1-15.

Wang, D., Jiang, Y., Song, H., He, F., Gu, M., Sun, J. (2017). Verification of Implementations of Cryptographic Hash Functions. /EEE Access, 5,
7816-7825.

(2010). Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication 800-22
Revision Ta, NIST.

Antonov, A.V., Bzot, V. B., (2013) Variant jeffektivnoj realizacii metoda postroenija hesh-funkcij na osnove haoticheskih otobrazhenij s
peremennymi parametrami i parallel'noj organizaciej vychislenij. Sistemi obrobki informacii, 1, 187-191.

bAPUBIH Onekciit IropoBuy
KaHANAAT TeXHIYHIX HayK, 3aBiayBay kadepu padiodizukm Ta kibepbesneku, loHeLbKuii HaLiOHaNbHMI yHiBepCUTET
imeHi Bacuna (tyca, Binnmua. E-mail: 0.barybin@donnu.edu.ua. ORCID ID: 0000-0002-0897-4454.

TKAYEHKO Bipa CepriiBHa
KaHauAaT Gi3nKo-MaTeMaTUYHUX HayK, AOLEHT, AOLEHT Kahepy 3aranbHoi Ta AMAAKTKN Gi3ukm, [oHeLbKUiA HaLioHanbHuii yHiBepcuTeT
imeHi Bacuna Ctyca, BiHnunua. E-mail: v.tkachenko@donnu.edu.ua. ORCID ID: 0000-0001-6064-5474

*KABCbKA €EnuzaBeta OneriBHa
crynenTka (0 «Marictp» cneuianbHocri 122 Komn'ioTepHi Haykw, [loHewbKuii HawioHanbHuii yHiBepcuTeT imeHi Bacuna (ryca,
Binnmuga. E-mail: jabska.e@donnu.edu.ua. ORCID ID: 0000-0002-9917-3723.

METPOBA Ipuna IropisHa

crynenTka CO «Marictp» cnevjanbHocti 122 Komn'toTepHi Hayku, [loHewbKuil HawioHanbHWi yHiBepcuTeT imeHi Bacuna (Tyca, BinHuua.
E-mail: petrova.i@donnu.edu.ua. ORCID ID: 0000-0001-6870-7502.

PEAJII3ALIA TA TECTYBAHHA FEW-OYHKLIT
HA OCHOBI MOAN®IKOBAHOIO AJIFOPUTMY SKEIN

AHoTaujif. AKTyanbHICTb Ta MeTa CTaTTi. Y CTaTTi N0Ka3aHo, L0 OpuriHanbHIi anropuTMm rewuyBanHs Skein, skuii 6yB po-

3po6nenuil B pamkax KOHKYpCy Ha HoBwiA craHaapT SHA-3 HawioHanbHoro iHcTuTyTy crangapri i TexHonoriii CLUA (NIST) i 6ys
OAHUM 3 N'ATY iHanicTiB MOXe OYTV MOANPIKOBaHO ANA NiABULLEHHA edeKTUBHOCTI ioro poboTy B cuctemax 3 baratoagep-
HUMU NPOLeCOpamK, AKUMI KOMMNAEKTYIOTbCA NPAKTYHO BCi CyYacHi HACTINbHI Ta MOGinbHI NpUCTpoi. AHani3 HeuncneHHIx
nybnikawiit, AKi NpUCBAYEHi PO3BUTKY MOXKNMBOCTEN OPUriHANILHOrO anropuTMy, NOKasye, Lo BC aBTOPU 30CepekylTb
yBary Ha nifBULLEHHi e$eKTUBHOCTI BUKOHAHHA anropuTMy LUAAXOM ONTUMI3aLii po3napanentoBaHHA 06uncneHb, AKi ckna-

22

#24(2018)

JaloTb CTPYKTYpy anroputmy. Mpn uboMy came WBMAKICTL 06uMCIEHb NPy iMANeMeHTaLii Liboro anroputMy 6yna opHieto 3
0CHOBHIX i10r0 HeZoniKiB. CNpoLLeHHsA OpUriHANBHOMO anropUTMY paHilLe He po3riAaanach, Lo CTano MeTok CTaTTi.

MeToau gocnigxeHHA. AHani3 opuriHanbHOro anropuTMy BUABHB, Lo 6a30B0K0 NepesyMOBO 3aNpoNOHOBAHOI MO-
ANQiKavii € Te, Wo BiH Aa€ MOXNUBICTb NOOYAYBaTM reww-QyHKLt0 3 napameTpamu, AKi MOXHa HanawToByBaTu. lew-
dyHKUiA OyayeTbCA Ha OCHOBI 6710KOBOTO anropuTMy LUNGPYBAHHA 3 perynboBaHUM po3mipom 6moky. Poamipu 6roky Ta
Knioya € GikCoBaHMMI, ane BOHI He BIU3HAYaKTb PO3MIp BUXIAHOTO pAAKa rew-GyHKLi, o YCKNaAHIOE MeTOAM aTak, AKi
IPYHTYIOTbCA Ha 3HAXOAXKEHHI AOBXIHY KSt0Ya. 3MiHHNIA PO3MIp BUXIAHOTO PAAKA A03BONAE 3p0OUTH rew-QYHKLo ayxe
THYYKOK: 3'ABNAETHCA MOXANBICTL BUKOPUCTOBYBATY relL-QYHKLiI0 Y AoAaTKax Ta NPUCTPOAX 3 0OMeXeHUM 06CArom
nam’aTi. 30kpema Ha MobinbHIUX NPUCTPOAX.

PesynbTatin. 3anponoHoBaHo MoaudikaLito Skein 3acHOBaHY Ha TOMY, LLIO B OPUTiHANbHOMY anropuUTMi nepesbayaerbes,
L0 NpoLec relyBaHHA Moxe ByTi npeacTaBneHuin y BUrNAAi baratopiBHeBoi AepeBonogibHoi cTpykTypu. OcHOBHA ifeA
MONAra€ y TOMY, LU0 Ha NepLIOMY PiBHi reLyBaHHA NOBiOMEHHA Po36UBAETLCA Ha OMI0KK, ANA KOXHOIO 3 6110KiB 06unato-
€TbCA BifNOBIHI NapameTpy, Ha AAPYromy Ta BULLIX PIBHAX BXe OTPUMAHi 3HAUEHHA LX NapameTpiB BUKOPUCTOBYIOTbCA Y
AKOCT BXifHUX. [InA npuLLBMALLIEHHA poboTh anroputmMy OyNo 3anponoHoBaHe CyTTeBE CMPOLLEHHA — BUKOPUCTAHHA NuLLe
OfIHOPIBHEBOrO reLlyBaHHS, L0 GaKTYHO 03HAUaE BiMOBY Bifj 3aCTOCYBaHHA AepeBonogibHoi CTpyKTypu 06umncieHb.

leww-QyHKLI0, AKA 3aCHOBaHA Ha MOANDIKOBAHOMY anropuTMi, peaizoBaHo i3 BUKOPUCTAHHA MOBYM NPOrpamyBaHHA
Python. PesynbTatyn TectyBanHa BignosiaHo fo craHaapty NIST SP 800-22 Ha Bubopui, Aka cknaganaca 3 1000 dainis 3
pe3ynbTaTaMu rewyBaHH#, NoKa3anu BiacoTok daiini, AKi NpoiLLNy TecTyBaHHs, Big 98,0 40 99,6%, Lo CBIAYMTL NPO Te,
L0 peani3oBaHa reww-GyHKLiA Ha OCHOBI MOANPIKOBaHOro anroputma Skein Bignosiagae BUMoram 4o BUNAAKOBIX i NCeB-
AOBUNAZKOBYX reHePaTopiB LiNMX YiCen Ta reww-QyHKLii.

HaykoBa HOBI3Ha Ta MpaKTUYHA 3HAYMMICTb. BnepLue 3anponoHoBaHO NPULIBMALINTI eEeKTUBHICTb iMnaeMeHTaLi
anropuTMy rewwyBaHHaA Skein WAAXOM CNpOLLEHHA CTPYKTYpyU 06uMCneHb Ta NOKa3aHO, WO rewl-GyHKLiA 3aCHOBaHA Ha
cnpoLeHomy anroputmi ignosigae crangapty NIST SP 800-22.

Kmiouoei cnoea: zew-pyHkuii, Skein, cmamucmuyni Memoou aHanisy 2ewl-@yHKyit.

bAPbIbUH Anexkceit UropeBuy
KaHAWAAT TeXHMUECKMX HaYK, 3aBeayloLmil kadeapoii pagnodusnkm u knbepbesonacHoctu, loHeLKuii HaLMOHaNbHbIA YHUBEPCUTET
umenn Bacbina Cyca, Bunnuua. E-mail: 0.barybin@donnu.edu.ua. ORCID ID: 0000-0002-0897-4454.

TKAYEHKO Bepa CepreeBHa
KaHauaaT GU3MKO-MaTeMATIUECKUX HayK, OLEHT, AOLEHT Kadeapbl 06LLeil 1 AMAAKTUKN GU3NKN, [OHELKMI HALMOHATIbHBIil yHUBEpCUTET
umenn Bacoina (tyca, Bunnuua. E-mail: v.tkachenko@donnu.edu.ua. ORCID ID: 0000-0001-6064-5474

MKABCKAA EnnzaBeta OneroBHa
crynenTka (0 «Maructp» cneumanbHoci 122 KomnbiotepHble Hayku, [loHeLKuil HaumoHanbHbIA yHuBepcuTeT umeHu Bacbina (Tyca, Buknuua.
E-mail: jabska.e@donnu.edu.ua. ORCID ID: 0000-0002-9917-3723.

NMETPOBA Upuna UropeBHa
crynenTka (0 «Maructp» cneumanbHoctin 122 KomnbloTepHble Hayky, loHewKwil HauMOHANbHBI yHuBEpCUTET UMeHU Bacunua CTyca, Buhhuua.
E-mail: petrova.i@donnu.edu.ua. ORCID ID: 0000-0001-6870-7502.

PEAJIN3ALNA U TECTUPOBAHUE X3LWW-OYHKLUN HA OCHOBE
MOANONLNPOBAHHOIO AJIFOPUTMA SKEIN

AHHoTaumA. AKTyanbHOCTb U Leb CTaTbi. B cTaTbe NoKa3aHo, UTo OpUrMHANbHbIA anropuT™ XewwnpoBaHus Skein,
KoTOpblii Obin pa3paboTaH B pamkax KOHKypca Ha HOBblil cTaHAapT SHA-3 HaumoHanbHOro WMHCTMTYTa C(TaHAApTOB U
TexHonoruit CLUA (NIST) u 6611 0fHUM 13 AT QUHANMCTOB MOXKET ObITb MOANGULMPOBAH ANA NOBbILLEHNA 3OOEKTUBHOCTN

23

NPOBJIEMU IHOOPMALIMHUX TEXHONOT I

ero paboTbl B CMCTeMax ¢ MHOT0AZEPHbIMIA NPOLLeCCOPaMM, KOTOPbIMI KOMMNEKTYIOTCA NPaKTUYeCKN BCe COBPEMEHHbIe
HaCTONbHbIE 1 MOBUAbHbIE YCTPOIACTBA. AHANU3 HEMHOTOYNCIIEHHBIX NY6NNKALMIA, NOCBALLEHHbIX Pa3BUTIK BO3MOXHO-
(Teil OpUrHANBHOTO anropuTMa, NoKasblBaeT, YTo BCe aBTOPbI COCPEAOTOUEHbI HA NOBbILIEHNM SOPEKTUBHOCTY BbINON-
HeHWUA anropuTMa nyTem ONTUMW3ALNM PacnapaniennBaHuA BbIYNCIEHNIA, KOTOPblE COCTABNAKT CTPYKTYpY anroputma.
[pu 3TOM UMEHHO CKOPOCTb BbIYMCIEHIIA NPX UMANIEMEHTaLK 3TOr0 anropuTMa Obina 0AHON 13 OCHOBHDBIX €ro Hefjo-
(TaTKOB. YNpOLLeHue OpUriHanbHOro anropuTMa paHee He paccMaTpuBanach, YTo CTano Lenblo cratbit.

MeToabl uccnegoBaHna. AHanu3 OpUrMHanbHOro anropuTMa BbIABIA, YTO 0a30BOM NPeAnoCbIIKON NPeanoXeHHoN
MOANGUKaLMM ABNAETCA TO, UTO OH JAeT BO3MOXKHOCTb MOCTPOUTD Xew-QYHKLMI0 C MapaMeTpamit, KOTOpPble MOXHO
HaCcTpanBaTh. Xew-(yHKLNA CTPOUTCA Ha OCHOBE 6/10YHOr0 aNropuTMa WIdPOBaHKA C perynnpyembim pasmepom 6oka.
Pa3mepbl 610Ka 1 Kntoya ABNAITCA GUKCMPOBAHHBIMI, HO OHIN He ONpeAenslT pa3mep UCXOAHON CTPOKN Xelu-GyHKLMN,
YTO YCIOXKHAET METO/bI aTaK, OCHOBAHHbIX Ha HAX0XKAEHUM ANMHbI KNtoua. llepemeHHbIi pa3Mep UCXO[HON CTPOKM Mo3-
BOJIAET CAeNaTb XeLU-QYHKLK 0ueHb r1OKol: NOABNAETCA BO3MOMXHOCTb MCMONb30BATb XeLU-QYHKLIAK B NPUAOKEHNAX 1
yCTPOIACTBAX C OrPaHMUYEHHbIM 00beMOM NaMATH. B yacTHOCTY, Ha MOBUNBHBIX YCTPOIACTBAX.

Pe3ynbtartbl. [lpeanoxeHa moaudukaumna Skein oCHoBaHHaA Ha TOM, UTO B OPUTMHANILHOM anroOpUTMe NPOLecC Xeluu-
POBaHNA MOXeT ObiTb NpeACTaBNeH B BUAE MHOrOYPOBHEBOI APeBOBUAHOI CTPYKTYpbl. OCHOBHAA MAeA 3aKNiyaeTca B
TOM, YTO Ha NEPBOM YPOBHE XeLINpOBaHMA CoobLieHne pa3dbuBaeTca Ha ONOKM, ANA KaXKAOro u3 610KoB ncuncnaeTca
COOTBETCTBYIOLLME NapaMeTpbl, HA BTOPOM U BbICLUNX YPOBHAX yXe MOyYeHHble 3HaUeHNA 3TUX NapaMeTpoB UCNONb3y-
H0TCA B KauecTe BXOAHbIX. [InA ycKopeHUA paboTbl anroputma Obino NpeanoxeHo CyLecTBeHHoe YnpoLLeHne — UCnonb-
30BaHue TObKO OAHOYPOBHEBOTO XeLLMPOBaHNA, UTO GAKTUUECKI 03HAUAeT 0TKA3 OT NPUMeHeHUA ApeBOBIUAHON CTPYK-
TYpbl BbIUMUIEHMWIA.

Xeww-QyHKuMA, KOTOpas 0CHOBaHA Ha MOANQULMPOBAHHOM anropuTMme, Gbina peann3oBaHa ¢ MCMONb30BaHNEM A3bIKa
nporpammupoBaHna Python. PesynbTatbl TecTupoBaHuA B cooTeTcTBMM o cTaHAapTom NIST SP 800-22 Ha Bbibopke,
coctoAweii n3 1000 Gpaitno. ¢ pe3ynbTaTaMm XeLUMpoBaHUA, NOKa3any NPOLEHT Gaitnos, KOTOPble NPOLLAN TeCTUPOBaHUe,
01 98,0 10 99,6%, uTO CBMAETENbCTBYET 0 TOM, UTO Peanu30BaHHaA Xewl-PyHKLNA Ha OCHOBE MOANGULIMPOBAHHOTO aNro-
putma Skein cooTBeTCTBYeT TpeHOBAHMAM K CTyYaliHbIM 11 NICEBAOCTYYAlHbIM FeHepaTopam Yncen u Xewl-GYHKLMAM.

HayyHaA HOBM3HA W MPaKTMYeCKkaa 3HaUMMOCTb. BnepBble NpeanoxeHo yckoputb IPGEKTUBHOCTL UMNEMEHTALIN
anropuTMa xewwnpoBanua Skein nyTem ynpoLLeHuA CTPYKTYpbl BbIUMCIEHMIA U MOKA3aHO, UTO XeLl-(YHKLMA 0CHOBAHA Ha
ynpoLyeHHom anroputme cootsetcTByeT craHaapty NIST SP 800-22.

Kntoyeesie cnoea: xeuw-gyHkyuu, Skein, cmamucmuyeckue MemoObl GHANU3A Xew-PyHKYUU.

NITEPATYPA:

1. Keith M. M., Everyday Cryptography. Fundamental Principles and Applications: Second edition. Croydon : Oxford University Press, 2017.773 p.

2. Atighehchi K., Enache A., Muntean T., Risterucci G. An Efficient Parallel Algorithm For Skein Hash Functions. Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Systems. Innsbruck, Austria, 2010. - P. 1-11.

3. Bahi J. M., Couchot J.-F., Guyeux C. Quality Analysis of a Chaotic Proven Keyed Hash Function. International Journal On Advances in Internet
Technology. 2012. Vol. 5. Ne 1. P.26-33.

4. Hadedy M. El., Gligoroski D., Knapskog S. J., Margala M. Compact Implementation of BLUE MIDNIGHT WISH-256 Hash Function on Xilinx FPGA
Platform. Journal of Information Assurance and Security. 2010. Vol. 5. P. 626-636.

5. Al-shaikhli I. F., Alahmad M. A., Munthir K. Hash Function of Finalist SHA-3 : Analysis Study. International Journal of Advanced Computer
Science and Information Technology (IJACSIT). 2013. Vol. 2, N° 2. P. 37-48.

6. Changs., PerlnerR., Burr W. E., Turan M. S., Kelsey J. M., Paul S., Bassham L. E. Third-Round Report of the SHA-3 Cryptographic Hash Algorithm
Competition. NIST. 2012. 84 p.

7. Shivaprasad S., Ramaswamy A., Raviprasad R.T., Sadanandam M. Optimization of Skein Hash Function Using Pluto Tool. International Journal of
Applied Engineering Research. 2016. Vol. 11, N2 5. P. 3624-3631.

8. Ferguson N., Lucks S., Schneier B., Whiting D., Bellare M., Kohno T., Callas J., Walker J. The Skein Hash Function Family. URL: http://
www.skein-hash.info/sites/default/files/skein1.3.pdf.

24

10.

1.

12.

#24(2018)

Aumasson J.-P., Calik ., Meier W., Ozen 0., Phan R. C.-W., Vania K. Improved Cryptanalysis of Skein. International Conference on the Theory
and Application of Cryptology and Information Security ASIACRYPT. Tokyo, Japan 2009. P. 542-559.

Goldhamer J. SHA-3 Submission: Skein Hash Function Family. Insight on skein hash function proposal. 2010. P. 1-3. URL:
https://koclab.cs.ucsh.edu/teaching/cren/project/2010/goldhamer.pdf.

Bellare M., Kohno T., Lucks S., Ferguson N., Schneier B., Whiting D., Callas J., Walker J. Provable Security Support for the Skein Hash Family
Version 1.0. URL: http://www.skein-hash.info/sites/default/files/skein-proofs.pdf.

Mouha N., Raunak M. S., Kuhn D. R., Kacker R. Finding Bugs in Cryptographic Hash Function Implementations. IEEE Transactions on Reliability.
2018.Vol. 99.P. 1-15.

. Wang D., Jiang Y., Song H., He F., Gu M., Sun J. Verification of Implementations of Cryptographic Hash Functions. IEEE Access. 2017. Vol. 5.

P.7816-7825.

. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication 800-22 Revision

1a, NIST. 2010.

. Antonov A. V., Bzot V. B. Variant jeffektivnoj realizacii metoda postroenija hesh-funkcij na osnove haoticheskih otobrazhenij s peremennymi

parametrami i parallel'noj organizaciej vychislenij. Sistemi obrobki informacii. 2013. Vip. 1. S. 187-191.

25

