NPOBJEMW IHOOPMALIMHX TEXHONOT I

INTEROPERABILITY OF DISTRIBUTED MULTIPLE SYSTEM
FOR MALWARE DETECTION BASED ON COMPONENTS
LEVELS OF SAFETY

UDC004.491

DOI: https://doi.org/10.35546/2313-0687.2018.24.78-92

SAVENKO Oleh
PhD, Professor, Dean of the Faculty of Programming, Computer and Telecommunication Systems, Khmelnytsky National University,
Khmelnytsky, Ukraine, E-mail: savenko_oleg_st@ukr.net, 0000-0002-4104-745X

Abstract. The work out the developed method of interaction of components of distributed multi-level system of
detection of malicious software on the basis of decentralized and self-organized architecture in local networks. Its feature is
the synthesis of its requirements of distribution, decentralization, multilevel and self-organization. This allows you to use it
autonomously. The basis of the distributed distributed system is its structural components, which are represented by
autonomous software modules that can be in different states. The transition between module states is based on a defined
set of transitions. Interaction and communication between autonomous software modules is based on their presence in
certain states during operation and is determined by the rules of the developed method. Distributed system is a responsive
system that will monitor selected events. Each program module places a resident mechanism, the motive mechanisms for
the transition between states, the transitions between which are given by subsets of transitions, the data for which will be
formed using the technologies of artificial intelligence. In addition, the feature of the components of the system is the same
organization, which allows the exchange of knowledge in the middle of the system, which, unlike the known systems,
allows us to use the knowledge gained by separate parts of our system in other parts. The developed system allows to fill it
with subsystems of detection of various types of malicious software in local area networks. The method of interaction of
components of a distributed multilevel detection system of malicious software provides a procedure for communication
between parts of the system and the exchange of knowledge between them. It will be used to organize the interaction of
system components and maintain its integrity. In order to solve the problem of the direct detection of malicious software in
local area networks, methods will be applied that will be applied to the lower level of the system, which will include the
architectural features of the distributed system and the technology of detecting the malicious software-based software.
However, the developed method of interaction includes the ability to determine the state of a distributed multi-level
system, depending on the states of individual modules, and on its basis, in accordance with it will be decided on the further
operation of the system as a whole and its configuration. The method regulates the actions of the part of the system that
relates to the bundling software of the distributed system. The conducted experiments on the use of the developed
distributed system showed the possibility of attracting to the detection of the malicious software of computing power of

78

#24 (2018)

other hosts of the local network. The obtained results of experiments show an increase in the reliability of the detection of

malicious software.

Keywords: malware, distributed multi-level system, decentralized system, computer systems, local area network.

Formulation of the problem. The growth of the
number of computer systems and the spread of information
technology in various industries and spheres, their integra-
tion into the global Internet network, as well as the grow-
ing opportunities for obtaining financial returns that ap-
pear at the same time, motivate malware developers to
increase and spread them [1, 2]. Trends in the development
of technology for the creation and spread of malware-many
of the security demonstrate an active expansion of the
technical capabilities of such tools. Modern malware is a
complex, multi-functional software system and complex
that is built using effective methods to create software and
malicious code spreading methods.

Distribution of malware in the information systems of lo
cial networks creates problems for users. Available means
of its appearance today do not meet the needs of users. This
is especially true of the task of detecting malware prior to
it, at the stage of its direct distribution. As a rule, detection
of malware comes from already after it was spread over a
period of time and was carrying out destructive actions. A
variety of antivirus tools that detect malicious software at
different stages of its operation are known to prevent its
full detection [1]. A special place is occupied by antivirus
products [3-7] that detect malware in local area networks.
They allow you to take advantage of an organization with
more computing power than individual computer systems.
They are mainly used in corporative networks of organiza-
tions and enterprises. Such network detection systems have
a centralized architecture used by malicious people to block
them, after detecting and blocking their centers.

Distribution of malware creates problems for users of
computer systems. Existing detection systems do not pro-
vide full detection. Therefore, the problem of developing
new methods and systems for detecting malicious software
is relevant.

Analysis of recent research and publications. For
network detection systems, methods have been developed,
which are possible mainly on the server or on corporate or
local networks. Most of these techniques are developed
using technologies and components of artificial

intelligence. As a rule, modern malware detection systems
contain sets of many methods and their combinations. This
is influenced by the growth of malicious software varieties.
Let's consider more well-known systems and methods for
detecting malicious software.

The known implementation of such detection systems
mainly has a single control center with a certain level of
centralization. These include: ESET Endpoint Security for
Windows Endpoint Protection in corporate networks [1],
Dr.Web CureNet! [2], Symantec Endpoint Protection [3],
Malwarebytes Endpoint Security [5], "Cisco® Network
Admission Control (NAC)»[6]. Kaspersky Administration Kit
[6] has implemented the principle of autonomous decision-
making in the network-based detection system. But in the
future, the administrator controls the decisions taken. This
indicates the presence of partial centralization in the
architecture of this network detection system.

Known malware detection tools are built on top-notch
methods that do not sufficiently take into account all the
stages of operation and possible structures, which reduces
the authenticity of the detection.

The authors of the paper [8] proposed a system of
identification and classification for megye cyber attacks. To
implement the system, a combination of different methods
of artificial machine learning, namely neural networks, the
immune system, neuro-physical classifiers and the method
of reference vectors, is proposed. A distinctive feature of the
proposed system is the multi-level analysis of network
traffic, which makes it possible to detect signature attacks
and combine a set of adaptive detectors based on machine
learning techniques.

The system for detecting cyberattacks on the basis of
the involvement of neural network immune detectors is
presented in [9]. The decision on the possible impact of the
malicious software is carried out with the involvement of a
system of neural network detectors based on the algorithm
of Mamdani.

The system of detection based on the selection of
characteristic features of the flow of the program is
presented in [10]. The proposed system involves building a

79

NPOBJIEMW IHOOPMALINHX TEXHONOT IV

graph of the flow of malware control, and then converting
it into a vector pro-stripe.

In [11], the authors identify a coordinated form of
organized cyber attacks in botnet components, in which
they conduct synchronized attacks in the form of groups.
The similarity of the activities of cooperative groups is used
as an effective measure for distinguishing bots from
ordinary users. In this paper an approach is proposed for the
analysis of behavior based on the histogram. To determine
the number of web requests and their diversity over time
using HTTP bots. As a result, the detection method is based
on the correlation analysis of communication histograms
designed to detect HTTP Botnets based on the similarity
and correlation of their group activity.

The development of methods without taking into
account the fundamental features of bot network
architectures, allows attackers to bypass the tools that use
typical representations. Sys-theme of modeling agents of
various architectures of botnets, taking into account the
various mechanisms of their functioning, is presented in
[12]. It is based on the need to take into account the
specialties of construction and structure. This is important
for gathering the characteristics of botnets.

The botnet detection system presented in [12] is based
on the analysis of traffic, and tac-toe modifications of the
methods are oriented on comparing the results of the
analysis of traffic with templates of the base of anomalies.
The disadvantage is the need for a constant analysis of
traffic and the allocation of important characteristics that
may vary by intruders. This does not take into account the
architecture of the botnet and packet blocking in the future
does not guarantee their repetition.

In [13-14], detection methods are based on signatures.
The results are applicable to known bots. They provide for
control of each package and compare them with pre-
configured signatures and attack patterns in the database.
The common disadvantage of these methods is the need to
update templates, which affects the system's failure to
display new botnets or their nodes.

The analysis showed that for detecting malware,
known systems carry out analysis of network traffic, audit
files, packets transmitted over the network, checking the
configuration of open network services. To establish the
fact of a violation of the work of the systems, various
methods of motor training are used, namely, neural

networks, artificial immune systems, the method of
reference vectors, Bayesian networks, and fuzzy clustering
[8-14]. The main disadvantage of known systems is their
host-oriented approach to detecting malicious software,
and for network detection systems, the presence of
centralization in decision-making or maintenance.

Therefore, further development of the theory and
practice of creating distributed systems for detecting
malware is a topical scientific and technical problem.

The aim of the study. In order to effectively apply
malware detection methods and means, it is necessary to
develop a system that includes a sufficient number of
implemented effective methods in the form of appropriate
subsystems, has a potential for upgrading and takes into
account future development trends as antivirus agents, and
malware.

The purpose of the work is to develop the theory and
practice of creating distributed multilevel detection
systems to increase the reliability of malware detection in
computer systems of local networks based on
decentralization and self-management. Multilevelness
involves the inclusion in the system of different detection
methods and their placement at different levels. Self-
organization serves as the basis for the functioning of a
rolled-up system with decentralized architecture.

The need for distributed multi-level detection systems
for malware-malware detection in local computer systems
is needed to attract other local area network hosts for the
detection process. This will increase the reliability of its
detection.

Presentation of research material. In order to
increase the authenticity of the detection of malicious
software, it is proposed to use decentralization of the
system in distributed systems in local networks and to
apply the developed method of interaction of the
components of the distributed detection system of the
malicious software to coordinate the components of the
system. It establishes the order of communication between
the components of the system and the exchange of
knowledge between them based on the security levels of
the system. They are dynamically determined at certain
moments of time. It will be used to solve top-level tasks of
the interaction organization. Only for the organization of
the interaction of components of the system and the
presentation of its integrity. To solve the problem of

80

#24(2018)

directly detecting malicious software on local networks,
methods will be applied that will apply to the lower level of
the system. They will include the architectural features of
the distributed system and the technology of detecting
malicious software. The generalized scheme of the main
components of the distributed system in local computer
networks is shown in Fig. 1/ Architecture of the distributed
multilevel detection system of the malicious software is
presented in [16].

The architecture of a distributed multi-level
system based on decentralization and self-
organization to detect malware. Taking into account
that the malware detection process will be conducted on
local networks, the choice of the model of the system's
operation should involve the inclusion of information from
all computer systems of the local network, that is,
placement in all computer systems of the system. This is
necessary to increase the efficiency and reliability of

detection by taking into account information on the state of
other computer systems for decision-making in a particular
computer system. These basic requirements that a system
should be placed on the network in each computer system,
affect the choice of model of its architecture. Also
important for such systems is that the center of decision-
making of the system is not presented and identified
unambiguously, since its detection will lead to an attack on
it to remove the entire system from the working state. The
system should be constructed so that its components in the
computer systems of the local network communicate
effectively with each other for the exchange of information
about the state of the computer systems in order to provide
additional information for decision-making. In addition, the
malware detection system must be structured accordingly
in order to be able to grow and increase it should not slow
down the detection process.

1st level 1st level 1st level
functions functions i functions
2nd level 2nd level 2nd level
functions functions e functions
HE BN H BB HE B R H E N
functions functions functions
of m level of m level - of m level
Decision making | Decision making Decision making
by module 1 by module 2 e by module n
Centers of decision making system
Module 1 | Module 2 | | | Module n
Organizétion of interaction with the use of protbcols
Module 1 | Module 2 | " m | Module n
Formation of system architecture
Module 1 | Module 2 | | | Module n

Fig.1 The generalized scheme of the main components of the distributed system

Structural components of the built-in distributed
system appear as autonomous software modules. They can
be in different states. The transition between module states
is based on a defined set of transitions. Interaction between
standalone software modules. It is based on their presence
in certain states during operation. Distributed system is a
responsive system that will monitor certain events. Each
program module contains a resident mechanism, moving
mechanisms for the transition between states.

Since the detection system is distributed, multilevel,
decentralized and self-organized, then it is necessary to
establish rules for its functioning and its components.

Method of interaction of components of
distributed multi-level system of detection of
malicious software on the basis of decentralization
and self-organization. The method of component
interaction supports the integrity of the system, changes its
configurations, establishes the order of communication
between the components of the system and the exchange
of knowledge between them. It will be used to solve the
tasks of organizing the interaction of components of the
system. To solve the problem of the direct detection of
malware, software will apply methods that are related to
the lower level of the system, which will include the

81

NPOBJIEMU IHOOPMALIIMHUX TEXHOOT I

architectural peculiarities of the distributed system and the
technology of detecting the malicious software.

Initial conditions for work The distributed system
according to the method of interaction of its components
are as follows: the launch of the software module in a
specific host is successful but successful; no less than in the
two systems of the network, the start function was
successful; programm module has already been
preinstalled successfully. Then, the following protocols that
occur on the network that are related to the functioning of
the system, will be presented by some steps:

1) determining the states of program modules;

2) processing responses from the software module to
the sent packages;

3) software uncertainty processing associated with the
absence of responses to sent packages;

4) scanning a given port computer systems;

5) assessment of the status of the software module and
its verification between the rest of the software module
distributed multi-level system at the stage of the exchange
of messages;

6) determining the state of a decentralized distributed
system;

7) making a decision on the further work. distributed
multi-level system in general on the basis of studying its
state by software modules;

8) the removal of the active software module from the
distributed multi-level system as a result of switching off
the software module;

9) events that activate methods for detecting malicious
software, affect the state of the state of the software
module distributed by the distributed multi-level system;
to carry out research of other computer systems for the
presence of similar activities and exchange of received
results;

10) processing and optimization of statistical data
accumulated in the system by each module separately;

11) knowledge sharing in the middle of a decentralized
distributed system;

12) joint execution of tasks with components
distributed multi-level system;

13) the work is distributed by the basis system,
consisting of only one component of system;

14) additional work of the distributed multi-level
system with new software module.

Determination of the states of program modules
distributed multi-level system. Determination of the status
of each software module in the computer systems , in
which the distributed multi-level system at the stages of
the start of the software module during its initial
installation, with daily loading of the computer systems,
during the functioning of the computer systems and at the
completion of the computer systems. Determination of the
status of the program module in the computer systems
includes verification of the computer systems, its software
and directly the level of activity of the software module
itself. Inclusion of information in the internal bases of each
software module of the system. Comparing the results of
scanning the computer systems with the previous scan
results for a certain period stored in the scan database. If
the scan results do not match the previous, then the
computer systems is blocked and a corresponding message
is displayed. If the basic scan settings match, then the
software module continues to work. Preparation and
formation of the message about your condition by each
module of the system. Entering a package message into the
software module (sent and received). Sending message
packets about your condition to all other parts. distributed
multi-level system in accordance with the specified registry
of software modules of the system and computer systems
in which they are located. Saving information about events
by the numbers and addresses of program modules
distributed multi-level system, which are included in the
database of software modules of the remaining computer
systems during installation.

Processing responses from the software modules
computer systems to the sent packages. Receive responses
to the sent message about the status of the software
module. If the submitted package was delivered
successfully, then the corresponding response is sent, and it
will necessarily be received separately after the first packet
sent from all components of the system. Expecting a
response by the program module of the system occurs at a
given time interval, which is calculated at the initial
installation of the system and takes into account the
technical capabilities of the network at the speed of packet
transmission, and also certain criteria can be entered, the
execution of which indicates the need to wait for the
message on the sent package, rather than switching to next
step. Taking into account the disabled computer systems

82

24 (2018)

that contain the software modules distributed multi-level
system and in which the software modules are not active,
to assess the state of integrity the system is distributed and
its structure at certain moments of time. Receiving
responses from everyone registered in the distributed
multi-level system, a software module from the rest of the
computer systems on the successful receipt of their package
with a statement of their status from all software modules
distributed multi-level system. Conduct analysis of received
answers from the software modules of the remaining
computer systems and analysis from which the computer
systems received replies, but not received. Processing of the
response to the successful receipt of the package with the
message about the status of the program module, which
sent this message to all the rest of the software modules
with distributed multi-level system, from a certain number
of software modules and determination of those from
which no response was received. Processing of the event,
which consists in not receiving the response from
anysoftware modules in the established time requirements.
Adding the received information to the module's message
base. Formation or confirmation of integrity distributed
multi-level system with active program modules. For each
package, which is formed after the computer systems is
turned on and sent to the rest of the computer systems, it is
mandatory to receive the application and to include the
software modules in the register of the active software
modules distributed multi-level system.

Processing by the program module of uncertainties
associated with the lack of responses to sent packages. If
the response to the sent packet from a given software
module of a particular computer systems is not received
within a specified time interval or the definition of such a
fact by other criteria, then scan the required port of a given
computer system. If the answer is received that the packet
was not delivered due to crashes in the transfer system,
then retry sending the packet to the specified computer
systems.

Scan a given port computer systems . The port number
through which the exchange of messages between
program modules is defined during configuration when the
software module is installed in the computer systems.
Additionally, several more ports can be installed as backup
to improve system durability. If the port scan is successful,
that is, the port is accessible, then the mark in the database

of sent and received messages is made and the software
modules for this computer systems goes into the packet
waiting state from it. Otherwise, that is, if the scan is
unsuccessful and indicates that the port is unavailable, that
is, the port is closed, then a mark is made in the database of
sent and received messages and the software modules on
this computer systems goes into the standby state of the
packet from it. If the explored computer systems is off, in
this case, make a backup of ports in turn. If the scan
response is negative, then the software modules goes into
the state of waiting for results from such a computer
systems; otherwise, a result of such a result is being tested
with other active software modules that have already been
generated by the distributed multi-level system.

Evaluation of the status of the software module and its
verification between the rest of the software module
distributed multi-level system at the stage of the exchange
of messages. Processing of events for the software module,
which sent packets to all computer systems: for the sent
packet the response was not received; After the port is
scanned, the response in the form of a result is not received
or received, which is open. Then the software module
monitors its result with the results of the rest of the
computer systems. For this purpose, a request is made in
the form of a package of the rest of the software modules,
besides the subject, who must send a confirmation of their
work, on the state of the program module under study. In
order to carry out the research on the instructions of one
selected software module, the software module is
distributed, the rest of the software module sends him one
packet of his condition and processes the replies from him.
Submit the research results of the selected software
module to the requested module. Processing the results of
the study of the selected software module. If the software
modules received the same response from the module
under study as the software module that activated this
validation event, then all the software module of the
distributed multi-level system consider that the module
under study is not yet active and continue to wait for the
packet from it when the computer systems is turned on.
The explored computer systems can be excluded, then all
the software module will receive the same response. If
program modules received different responses from the
study module or received a certain part and the other
received no other answers, as well as the software module

83

MPOBJIEMU IHOOPMALIMHUX TEXHOSOT I

that activated this validation event, then all program
modules notify the administrator about this event, issue a
message to their computer systems screen, write in their
registry of extraordinary situations and reduce the
distributed multi-level system for one software module.

Determine the state of a distributed multi-level system.
After a certain time set by the administrator, program
modules determine the state of the distributed multi-level
system with a certain periodicity in time or upon occurrence
of critical events in the computer systems. The software
module is distributed by the state-of-the-art system by its
level of security. Each software module individually after
the start determines its own state and in subsequent work
it changes depending on the functions performed.
Preparation and formation of a package with the
notification of its status to each software module system
and sending it from each software module to the remaining
active software module. Conduct confirmation of the
successful delivery of the package to each software module
from the rest of the software module.

To determine the state of safety, distributed multi-level
system, we use the data at the current time from its
software modules: the state of each software module from
the beginning of the current start, the time spent in each
state of the same software module, the levels of security in

each state of each software module. Calculation by the
formulas (1) and (2) of the state is allowed by the
distributed multi-level system by each software module on
the basis of the received data from all active software
module. The division into the system is carried out in two
stages. At the first stage, the level of defecation will be
distributed by the state-of-the-art system by the formula 1:

— Z?=1(1- Y5, ks1* Ps,i)

Rb,PBC,l - n ’

(1)

where Ry, ppc1- the level of security distributed
multi-level system, defined in the first stage, b -
security designation, [- the number of the software
module, n - number of software modules, distributed
multi-level system, kg; - the threat factor to be
affected by the software modules, s - the status of the
software modules, [0; 1] - the value of which is
determined from the segment, depending on which
functional imposition is laid down in a certain state,
Ds,1 - the probability of being affected, m - number of
states of the software modules.

By the formula 2 distributed multi-level system
determines its center at the moment, as well as, based on
this value, the allocation of critical software modules.

0, if the condition is fulfilled 1

g(Rb,pBCJ, K, s,s.ppc) = 41, if the condition is fulfilled 2,

(2)

2, if the condition is fulfilled 3

where g(Rp ppc1, K, S, Seppe) - the function of
determining the further steps for distributed multi-level
system, Ry, ppc,1 - security level distributed multi-level
system , received in the first stage by the formula 1, k -
number of active software modules from the total number
n, s - state number, s = 1, 2, ..., m, m - number of
states of the software modules, s pgc - average value for
distributed multi-level system based on a set of states of its
software modules. The conditions for specifying the
function g are presented in the table. The total number of
such cases can be 64, since there are four cases for the level
of security, two cases for the number of software modules,
which are included in the center distributed multi-level
system at the current time, eight for attributing the center
to one of the states due to the study of its deviation.

84

Under condition 1, if (R ppc1, K S, Seppe) =
0, then distributed multi-level system continues to work in
the mode when its software modules works in the states in
which they were. In this case, no action is taken on the
handling of situations in certain selected computer
systems.

When the condition 2 is fulfilled, if
9(Rypsc kS, Sepsc) =1, then distributed
multi-level system continues to work in the mode when its
software modules works in the states in which they were.
And also, the distributed multi-level system immediately
notices program modules for which additional clarification
is required regarding the tasks that are performed at the
current time.

#24(2018)

if

When
9(Rupsca kS, Scpsc) = 2, then distributed
multi-level system goes to the second stage of refinement
of its state based on the involvement of the time

the condition 3 is fulfilled,

characteristics of the states of all the software modules.

If the likelihood of being affected by the malicious
software will affect not only the software modules or their
impact on these modules is insignificant, it does not allow
you to determine the state of the distributed multi-level
system as critical. Such a case is possible when the study in
the first stage, due to the definition of the average value
and its subsequent use, was low due to the short time from

Ps,j<1

1 / m
Rpppc2 = 2 \ s=1<

Ws,j

1= =1, (1 - psy)

n
Zj=1 Ws,j

the last launch of the software modules or the need for its
averaging into eight states. But it may turn out that many
software modules have been or were in the same state for a
long time, but the use of criteria of the first phase does not
distinguish them. Therefore, to take into account such
boundary features, we select the probability of being
affected by the malicious software for the distributed
multi-level system in certain specified states and we
evaluate the such cases at the second stage of the study.
For the second stage of the determination of the state
distributed multi-level system, the general formula 3 of the
definition of the level of security will look like:

t .
n m S,J]
A
t5j>0, S=1°S,J
W, j>0

n
Zj=1ts,j

> + X5t ((1 + k) *

Z?;1Ws,j

where Ry, pgc2 - the level of security distributed
multi-level system determined at the second stage, b -
refer to safety, s - the number of software modules of
distributed multi-level system, o - the number of software
modules distributed multi-level system, 1m - the number of
states of software modules, k - rate risk of being infected
with malware, s that state software modules, the value of
which is determined from the segment, depending on
[0; 1] which functional load is laid in a certain state, py ;
- the probability of being affected malicious software, wy ;
- number stays with the number of software modules j in
thestate s, i = 1,2, ...,n, tsj - the total time spent
with the number of software modules in the state. Values
Ds,j are obtained on the basis of the results of the
operation of the installed in the program modules of the
subsystems of the detection of certain types of malicious
software.

Pinging status message distributed multi-level system
of each software module with the rest of the system
software modules. Analysis and processing of results each
software modules of distributed multilevel system. If all
software modules calculate state distributed multi-level

m n .
s=12j=1 Ws,j

: (3)

)

m n .
Ygt1Xj=1ts

system the same, then the system continues to work.
Results of checking on the status of a distributed multi-
level system match, then sent a message of each software
module to all other modules. This information is stored in
the internal register of events. If you find that at least one
of the software modules will respond to all the rest that he
received from a module result is different from his, and
their, then it indicates a message for all program modules
number of the software module and its result, which is
different from the general results. In this situation, all the
software modules, in addition to which different from other
results, the team sent him to lock the computer systems
and output messages cause the lock on the screen, and they
block the flow of any packages from it and withdraw it from
the registry system. distributed multi-level system continue
to operate, but each program module will display on the
screen computer systems message number and status of
software modules, which removed. If you find that a
software module received from all the same value of the
system, but it does not match the calculated it while he
sent all its value, while the software module blocks and
issues outlet computer systems situations message on the
screen. If parts of software modules distributed multi-level

85

NPOBJIEMU IHOOPMALINHUX TEXHOOT IV

system received packets to then start the implementation
of procedures to determine the reasons for not receiving
messages. After processing these events continue the work
program modules.

The decision on the future work of the distributed
multi-level system as a whole based on a study of the state
of software modules. Determining the level of each system
based on levels of software modules, their distribution by
groups at risk of being affected, that is defined levels of
threats and a decision on further work-based system results
in function 3 and Figure 4. If the state distributed multi-
level system, defined as such that the degree of safety is 0-
30%, while blocking software modules to implement all of
the computer systems and notify the administrator. This
event may also occur upon availability in the system of a
large number of software modules, which are at levels 2 or
3foralong time. If the state distributed multi-level system,
defined as having security level is 30-75%, while blocking
only those make computer systems, program modules
which indicates the classification of the computer systems
to the level of 0-30%, to inform the administrator and
transfer system status on the amount of computer systems
remaining. If the state distributed multi-level system,
defined as having security level is 75-100%, while they
explore the computer systems, in which the security level is
less than 75% for a long time. If you exceed the time limit
expired to combat the threat, then make blocking software
modules of the computer systems, inform the administrator
and proceed without remote software modules. If the state
distributed multi-level system, defined as having security
level is 75-100% and after study of the computer systems,
in which the security level is less than 75% for a long time,
they are not found, then continue.

Removing the active software from distributed multi-
level system as a result of disabling the computer systems.
If one of the computer systems turns off, then its program
module tells the rest of the modules and only then there is
a shutdown.

Events that activate methods for detecting malware
affect the state of the state of the software modules
distributed multi-level ~system. Investigating other
computer systems for the presence of similar activities and
sharing the results. When switching to the software
modules level 2, the method of detecting file malware
based on the agent approach and the fuzzy conclusion and

the method is based on the distribution of access in the
network and the attraction of additional computing
components of the network. When switching the software
module to level 3, the method of detecting botnets or the
method of detecting exploits is used.

Processing and optimization of statistical data
accumulated in the system by each module separately.
With a small load of computer systems and the absence of
other tasks that are related to the need to stay program
module at level 2 or 3, and long-term in the state of 1, the
software modules goes to level 4 and researches the
accumulated statistical data. In particular, it monitors and
analyzes the launch procedure of the software modules in
comparison with other computer systems programs and the
time it starts for a certain period of time. Processing such
data includes the calculation of the main statistical
parameters: the definition of the average value, the
variance and the mean square deviation. Implementation
of optimization of accumulated statistical data in the bases
of software modules. If there is a calculation and a
significant deviation is detected, data optimization is not
performed, the computer systems is blocked and the
administrator notifies.

Knowledge sharing in the middle of a distributed
multilevel system. The results obtained by one software
module distributed multi-level system, which relate to the
detection and localization of the malicious software, are
generated in a package and sent to other software modules
on the network that use these results to verify their
computer systems.

Compatible completion of the match problems
distributed multi-level system. Collective execution of the
tasks related to the detection of the malicious software by
increasing the computational resources for the software
module by sending a part of the tasks to other computer
systems for the investigation of the malicious software, in
which there are suspicious behaviors. In particular, the
involvement of other computer systemsprocessors in the
software modules of the processor's work to encourage the
manifestation of the malicious software. Preparation and
submission to other software modules of the results
obtained.

The work is distributed multi-level system, consisting of
only one software module. If the distributed multi-level
system remains in one of the software modules, due to the

86

#24(2018)

correct completion of the work of the other software
modules, then it goes to the limited use of its capabilities
and can move from the first level to the other, with limited
capabilities. After the next new launch, the system is in this
software modules, it is compulsory to check its status,
provided it goes to level 2, remaining one in the system.
Thus, every last running software modules during a new
run is distributed by the host system so is checked.

Replacement distributed multi-level system with new
modules. Computer systems that will turn on later will
rebuild the system by expanding it. Each software module
of the computer systems will mail packets to other software
modules.

The use of the developed method allows organizing the
maintenance of the integrity of the system and the transfer
of knowledge received by separate structural components
of a decentralized distributed system software modules to
other components. The developed method is the basis for
developing a bundle of software for a decentralized
distributed detection system for malicious software in local
computer networks based on its security level.

The developed method of interaction of components of
the system allows to support the work of distributed multi-
level systems and their integrity in local area networks.
Based on it, a distributed, multilevel system is developed
that allows it to be filled with the implementation of
various methods for detecting malicious software and apply
a network component to them when detected.

Experiments. A developed method for the interaction
of components distributed multi-level system and imple-
mented methods for detecting file malicious software was
tested experimentally. The experiment was conducted on a
local network. The results of the system have been saved to
log files. To carry out the experiment, a network of 20 com-
puter systems was involved. Each computer system was
equipped with a virtual environment based on Qemu,
which was activated by the software module of the devel-
oped system for investigating allegedly malicious behavior
and receiving API functions calls. The study of executable
programs was carried out in three stages of their function-
ing: access to the computer systems, activation and imple-
mentation of the established functions. Each software
module has used the database of behavioral models of the
malicious software program at its various stages of opera-
tion. In order to calculate the authenticity of the malware

file detection, the following experiment was conducted
with different types of file malware: file (simple) viruses,
polymorphic viruses, metamorphic viruses, and Trojan
horses. There were generated 600 software objects with
the functional load of the four types of files under consider-
ation, each containing 150 malicious software. Each of the
generated variations of metamorphic viruses used the main
techniques of confusing the code: inserting garbage com-
mands, using equivalent instructions, and moving the
instruction blocks. Signatures of the generated file mali-
cious software are absent in the databases of the signal
round. All program objects were divided into groups for
specifying how they would enter the computer systems to
take into account all possible ways of penetration into the
computer systems:

1) program objects copied to the hard disk of each
computer systems;

2) program objects loaded on flash drives and connect-
ed to each computer systems;

3) program objects downloaded to a pre-created web
site;

4) program objects archived and sent to previously cre-
ated electronic addresses;

5) program objects are downloaded to pre-created ftp-
servers of all computer systems.

The launch of the generated program objects was
carried out by a special program, which was installed in
each computer systems and launched one software object
from the malicious software in each computer systems at a
time. Then everything was repeated to select another
software object. Running useful programs in all computer
systems was not performed. After turning on all the
computer systems, the operation systems and all the
programs that are scheduled to start automatically are
loaded. All computer systems contained the same hardware
and software.

The results of the conducted experiment and the
assessment of the authenticity of the malware detection
Distributed Multilevel System [16], in which the methods
are implemented, is presented in Table 1. In addition,
according to the results of the experiment, the number of
software module that were involved in the study
throughout the experiment and the number of software
module that were blocked by the rest of the software
module of the developed system during the detection were

87

NPOBJIEMU IHOOPMALIMHUX TEXHONOT I

LEAL L LR 22
sesssssse
(L LR E R XX)
AL L LR NN)
LA L L LR 22
sessenee
[AL EXR XX)

also determined. This confirms the use of the rest of the detecting the malicious software of individual software
components of the distributed system in the process of module.

Table 1
Experiment results for malicious software misleading the software
The number of Number of software
software modules
Number of that were in- modules that were
Software objects with explicitinside | programs Percent . blocked by the rest of
. : volved in the
malicious software detected as detection,% the software modules of
- study of the
suspicious . the developed system
whole experi- . .
during the detection
ment
File viruses 150 146 97,3% 0 2
Polymorphic viruses 150 134 89,3% 57 7
Metamorphic viruses 150 138 92,3% 24 3
Trojan programs 150 128 85,3% 2 5
Total 600 546 90,9 20,75 57

The following known anti-virus tools were selected sion 11.0), Microsoft Security Essentials (version
for benchmarking: ESET Smart Security (version 4.11.15063.446), Avira Antivirus (version 10.0). The
10.1.204.0), Avast (version 17.5.2303), Comodo Antivi- results of the developed Distributed Multilevel System
rus (version 8.2.0.4674), Kaspersky (version 17.0.0.61), for detecting malicious software are presented in the
McAfee Internet Security (version 10.1.0), Dr.Web (ver- diagram in Fig. 2.

700 97,3 98 =
N 90,9
600 96

wn
o
o

IS
o
o

Number of samples
w
o
o

200
100
0
File viruses Polymorphic Metamorphic Trojan Total
viruses viruses programs
malicious software B Number of programs detected as suspiciousi

Fig. 2. Experiment results

88

#24(2018)

The results of experimental studies using the developed
Distributed Multilevel System based on the method of
organizing the interaction of its components are confirmed
by the fidelity of the scientific principles of the developed
methods and the efficiency of the architecture of the dis-
tributed multilevel system. Its implementation increases
the authenticity of the detection by 5-12% in the network
representation compared to the host, and by 2-4% com-
pared with the existing network firewall detecting the file
new malware.

Conclusions. Using the developed method of
interaction of components of the system allows organizing

the support for the integrity of the distributed multi-level
system and the transfer of knowledge acquired by the
individual structural components of the system software
modules of the remaining components. The developed
method is the basis for developing a bundle of software
distributed multi-level decentralized system of detection of
malicious software.

The direction of further research is the development
of new models of malicious software, the detailed
structure of the distributed multi-level system, its states
and filling subsystems of detection of various types of
malware.

REFERENCES:

Security Response Publications. (2019).
response/publications/monthlythreatreport.jsp.

Monthly ~ Threat Report. Retrieved from https://www.symantec.com/security_

2. McAfee Labs. (2019). McAfee Labs Threat Report. December 2017. Retrieved from https://www.mcafee.com /us/resources/reports/rp-
quarterly-threats-dec-2017.pdf.

3. Symantec. (2019). Overview of Symantec Endpoint Protection 12. Part 2. Retrieved from https://www.anti-malware.ru/reviews/
Symantec_Endpoint_Protection_12_2.

4. Palo Alto Networks. (2019). Retrieved from https://www.paloaltonetworks.com/

5. Malwarebytes. (2019). Malwarebytes Endpoint Security. Retrieved from https://ru.malware bytes.com/business/endpointsecurity/

6. Cisco. (2019). Cisco NAC Appliance (Clean Access). Retrieved from https://www.cisco. com/c/en/us/products/security/nac-appliance-clean-
access/index.html.

7. Comodo (2019). Comodo CyberSecurity. Retrieved from https://www.comodo.com/

8. Branitskiy, A., Kotenko, I. (2017). Hybridization of computational intelligence methods for attack detection in computer networks. Journal of
Computational Science, 23, 145-156.

9. Bezobrazov, S., Sachenko, A., Komar, M., Rubanau, V. (2016). The methods of artificial intelligence for malicious applications detection in
Android 0S. International Journal of Computing, 15 (3), 184—190.

10. David, B., Filiol, E., Gallienne, K. (2017). Structural analysis of binary executable headers for malware detection optimization. Journal of
Computer Virology and Hacking Techniques, 13 (2), 87-93.

11. Eslahi, M., Abidin, W. Z., Naseri, M. V. (2017). Correlation-based HTTP Botnet detection using network communication histogram analysis. In
Proceedings of 2017 IEEE Conference on Application, Information and Network Security, Miri, Malaysia, 2017 (pp. 7-12).

12. Pronoza, A., Vitkova, L., Chechulin, A., Kotenko, 1. (2019). Visual Analysis of Information Dissemination Channels in Social Network for
Protection Against Inappropriate Content. In Proceedings of the Third International Scientific Conference: Intelligent Information Technologies for
Industry, Volume 2, Sochi, Russia, 2019 (pp.95-105).

13. Sun, M., Xu, G., Zhang, J., Kim, D. (2017). Tracking you through DNS traffic: Linking user sessions by clustering with Dirichlet mixture model. In
Proceedings of 20th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, Miami, FL, US, 2017 (pp.
303-310).

14. Schomp, K., Rabinovich, M., Allman, M. (2016). Towards a model of DNS client behavior. In Proceedings of the International Conference on
Passive and Active Network Measurement, volume 9631, Heraklion, Crete, Greece, 2016 (pp. 263—275).

15. Zheng, J., Li, Q., Gu, G., Cao, J., Yau, D. KY, Wu, J. (2018). RealtimeDDoS Defense Using COTS SDN Switches via Adaptive Correlation Analysis. /EEE
Transactions on Information Forensics and Security, 13(7), 1838—1853.

16. Markowsky, G., Savenko, 0., Sachenko, A. (2019). Distributed Malware Detection System Based on Decentralized Architecture in Local Area

Networks. Advances in Intelligent Systems and Computing Ill, 871, 582—598.

89

NPOBJIEMW IHOOPMALIVHWX TEXHONOT IV

CABEHKO Oner CtaHicnaBoBuy
K.T.H., npodecop, AekaH dakynbTeTy NporpamyBaHHA Ta KOMN'KOTEPHUX | TENEKOMYHIKaLiliHUX CUCTEM NPOrpamyBaHHS,
E-mail: savenko_oleg_st@ukr.net

OPTrAHI3ALIA B3BAEMOAII KOMMOHEHTIB PO3MOAUIEHOI BATATOPIBHEBOI
CUCTEMW BUABJIEHHSA 3JIOBMUCHOIO MPOrPAMHOIO 3ABE3MNEYEHHA
HA OCHOBI PIBHIB iX BE3MNEKU

Y poboTi npeacTaBneHo po3pobneHnit MeToa B3aEMOZAIT KOMMNOHEHTIB Po3noAineHoi 6aratopiBHeBOT CMCTeMI BUAB-
NIEHHA 310BMIUCHOTO NporpamHoro 3abesneueHHa (3M13) Ha 0CHOBI AeLEHTPANi30BaHOI Ta CAMOOPraHi30BaHOi apXiTek-
TYPU B OKANbHIX Mepexax. [i 0COBAMBICTIO € CUHTE3 B Hili BUMOT PO3MOAINEHOCTI, AeLIeHTPani30BaHoCTi, 6aratopiBHe-
BOCTi Ta camoopraHi3oBaHocTi. Lle 103BonsAe BUKOpUCTOBYBaTH ii aBTOHOMHO. OCHOBOK MOOYZOBaHOI po3nofineHoi
CMCTeMU € Ti CTPYKTYPHI KOMNOHEHTH, AKI NpefcTaBAA0TbCA aBTOHOMHUMI NPOrPaMHAMI MOAYNAMM, L0 MOXYTb
nepe6byBaTy B pi3HUX CTaHax. llepexig MiX cTaHaMu MOAYNIB 3[INCHIOETbCA HA OCHOBI BIU3HAYEHOT MHOXWHI Nepexo-
AiB. B3aemogia Ta cninkyBaHHA MiXk aBTOHOMHUMI NPOTPaMHUMI MOAYNAMN 0A3Y€ETbCA HA OCHOBI iX NepebyBaHHA B
MeBHNX CTaHax Mif Yac ekcnyaTawii Ta BCTAHOBMIOETbCA NpaBunamu pospodneHoro metogy. Po3noginena cucrema €
pearyluoi Cucremoro, AKa 34iNCHIOBAaTUME MOHITOPUHT BU3HAYEHUX NOZii. KoXeH nporpamHuil MOAYNb MiCTUTD pe-
3UAEHTHUI MEXaHi3M, PYLLiiHi MeXaHi3MI AN Nepexody MiX CTaHami, NepexoAn Mix AKAMN 3a[alTbCA NiAMHOXK-
HaMi nepexoAiB, AaHHi AnA AKX GOpMyBaTUMYTbCA 3 BUKOPUCTAHHAM TEXHONOFIN WTYYHOro iHTenekTy. Kpim Toro,
0C0OMMBICTIO KOMMOHEHTIB CUCTEMN € TaKa CaMOOPraHi3aLlis, WO JA€ 3MOTY 34iliCHI0BaTA 00MiH 3HAHHAMM B CEpefuHi
CMCTeMU, AIKa Ha BIAMIHY Bif BiJOMMX CUCTEM [J03BONAE BUKOPUCTOBYBATU 3HAHHA OTPUMAHi OKPeMUMI YacTUHAMK
CMCTeMN B iHLWLMX YacTUHaX. Po3pobneHa cuctema [03BONAE 3[iIACHIOBATY i HANOBHEHHA MiACUCTEMAaMU BUABNEHHA
Pi3HOrO TUMY 3NOBMUCHOTO NPOTPaMHOr0 3abe3neyeHHA B NOKaNbHUX 06UNCOBaNbHIX Mepexax. MeToa B3aemogii
KOMMOHEHTiB po3nogineHoi 6aratopiBHeBoi cuctemu BuAgneHHaA 3013 BCTaHOBMIOE NOPAAOK 3[ilCHEHHA KOMYHiKavii
MiX YacTUHaMN CMCTeMN Ta 0OMiIHY 3HaHHAMN MiX HUMN. BiH 3aCTOCOBYBaTMMETbCA ANA OpraHi3avii B3aemogii Kom-
MOHEHT CUCTEMN i NIATPUMKM T LinicHocTi. [InA BupiweHHA npobnemu 3 6e3nocepeaHboro BABneHHA 3M13 B NoKanbHUX
00uMCTIoBaNbHMX Mepexax 3acToCoBYBAaTUMYTbCA METOAMN, AKi BIAHOCUTUMYTbCA [0 HUXKUYOTO PIBHA CUCTEMM, LU0
BK/KOUATUMYTb apXiTeKTypHi 0cObNMBOCTI po3nofineHoi cuctemu i TexHonorii BuasnexHa 3M13. Mpote po3pobneHwuit
MeTOA B3aEMOAii BKIOYAE MOXUBICTb BU3HAYEHHA CTaHy PO3NnoAineHoi 6araTopiBHEBOI CUCTEMU B 3aNeXHOCT Bif
(TaHiB OKpeMuX MOAYNIB Ta Ha 1A0ro OCHOBI 3riiHO HbOro NPUIAMATUMYTHCA PiLUeHHA NPo noAanbluy poboTy cuctemu B
Linomy i i koHirypauito. Metoa pernameHTye Aii Ti€i YaCTUHN CMCTEMU, AKa BIAHOCUTLCA 0 3B'A3YI0YOT0 NPOrPamHo-
ro 3abe3neueHHa po3nogineHoi cuctemu. NpoBefeHi eKcnepuMeHTH 3 BUKOPUCTAHHA Po3pobeHoi po3nogineHoi cuc-
TeMU MOKa3ani MOXNMBICTb 3anyyeHHA [0 BuABReHHA 3[13 06uncnioBanbHUX NoTyXHOCTeN iHWKUX KC nokanbHoi Me-
pexi. 0TpumaHi pe3ynbTaTh ekcnepuMeHTiB NOKa3ylTb NifBULLEHHA JOCTOBIPHOCTI BUABNeHHA 3113.

Kntoyoei cnosa: 3108mucHe npozpamye 3abesnederHs, po3nodineHa 6azamopieHesa cucmema, 0eyeHmpanizo8aHa cu-
cmema, Komn'omepHi cucmemu, I0KANIbHA Mepexa

90

24 (2018)

CABEHKO Oner CraHucnaBoBuy
K.T.H., npodeccop, AekaH GakynbTeTa nporpaMMUpoBaHuA, KOMMbITEPHDBIX U TeNekoMyHUKaLMOHHbIX cuctem, E-mail: savenko_oleg_st@ukr.net

OPFAHU3ALNA B3SAUMOLENCTBUA KOMIMOHEHTOB PACMNPEAENIEHHON
MHOIOYPOBHEBOW CUCTEMbl OBHAPYXEHS BPEJOHOCHOIO MPOrPAMMHOIO
OBECNEYEHNA HA OCHOBE YPOBHEWN UX BE3OMACHOTU

B pabote npeactaBneH paspaboTaHHblii MeTOA B3aUMOAEIACTBIAA KOMMOHEHTOB pacnpeaeNeHHol MHOr0ypoBHEeBOI
cucTeMbl 06HapyXKeHUA BpeAoHOCHOro nporpaMmmHoro obecneyenua (BI0) Ha ocHOBe AeLeHTPann30BaHHOM 1 CaMoopra-
HU3YIOLLIeICA apXUTEKTYPbl B TOKANbHbIX CeTAX. Ee 0C06eHHOCTbIO ABNAGTCA CUHTE3 B Heli TpeboBaHNIA pacnpeseneHHOCTH,
[eLieHTPANN30BaHOCTA, MHOTOYPOBHEBOCTM 11 CAMOOPTraHN30BaHHOCTM. ITO MO3BONAET WCMOMb30BATb €e aBTOHOMHO.
OCHOBOI# MOCTPOEHHOI pacnpefeneHHON CMCTEMbI ABAAETCA ee CTPYKTYPHbIE KOMMOHEHTbI, KOTOpble MpeACTaBAANTCA
aBTOHOMHBIMU NPOrPAMMHBIMI MOAYNAMIA, KOTOPbIE MOTYT HaXOAUTbCA B Pa3HbIX COCTOAHNAX. [lepexod Mexay cocTos-
HUAMY MOZYNeli 0CYLLLeCTBAACTCA Ha OCHOBe ONpefieNieHHOI MHOXeCTBa NepexodoB. B3anmopeicraue u obLeHne Mexay
aBTOHOMHbIMI NPOrPaMMHBIMI MOAYNAMI 6a3MpyeTCA Ha OCHOBe WX NpebbiBaHUA B onpedeneHHbIX COCTOAHUAX NpU
3KCnAyaTaLum 1 yCTaHaBNMBAETCA NpaBuiami pa3paboTaHHoro Metoda. PacnpeaeneHHas cuctema ABAAETCA pearnpyio-
Leli cucTemoli, Kotopas 6yaeT oCylleCTBAATL MOHUTOPUHT onpefieneHHbX CoObITuiA. Kaxablil mporpaMMHbIi MoAyNb
COZePXUT Pe3NAEHTHbIA MeXaHWU3M, ABMXKYLiMe MeXaHU3Mbl ANA Nepexofa Mexpy COCTOAHUAMM, Nepexodbl MeXay
KOTOPbIMI 33JAKTCA NOAMHOXeCTBaMI NepexofoB, AaHHble AnA KOTopbIX 6yayT ¢opmupoBaTbca ¢ UCMONb30BaHNEM
TEXHONOrIA UCKYCCTBEHHOTO HTeNNeKTa. Kpome Toro, 0CO6EHHOCTbI0 KOMMOHEHTOB CUCTEMbI €CTb Takas (aMOOpraHu3a-
LS, 4TO MO3BONAET OCYLLeCTBAATL 00MeH 3HAHUAMI BHYTPY CMCTEMbI, KOTOPasA B OT/INYME OT U3BECTHbIX CUCTEM N03BO-
NAET UCNONb30BaTb 3HaHWUA, NOAYYeHHble OTAENbHbIMI YaCTAMI CUCTEMbI B ApYrux yactax. Pa3pabotaHHas cuctema
M03BONAET OCYLLECTBAATL ee HAMONHEHNA NoAcuCTeMamit 06HAPYXKEeHNA Pa3NNYHOrO TUMA BPEeAOHOCHBIX NPOrpaMm B
NOKaNbHbIX BHIYMCIUTENbHDBIX CeTAX. MeTog B3aMMOoAelicTBUA KOMMOHEHTOB pacnpeaeNeHHOl MHOTOYPOBHEBOI CUCTEMbI
o6HapyeHna B0 ycraHaBnMBaeT nopAZoK 0CyLLECTBNEHNA KOMMYHIUKALIN MEX [y YacTAMM CUCTeMbl 1 06MeHa 3HaHU-
AMU Mexay HUMI. OH OyaeT NPUMEHATLCA ANA OpraHn3aLy B3auMoAencTBUA KOMMOHEHT CUCTeMbI 11 NoAAepXaHuA ee
LienoCTHoCTI. [lnA pewenna npobnembl ¢ HenocpeacTBEHHOr0 06HapyeHuA B0 B NOKanbHbIX BbIYNCTUTENBHBIX CETAX
MPUMEHATLCA MeTOAbI, KoTopble 6yayT OTHOCUTLCA K Go/iee HU3KOMY YPOBHIO CUCTEMbl, BKIHOUAKLLME apXUTEKTYpHble
0C00OEHHOCTU pacnpefieneHHoli cuctembl 1 TexHonorun o6Hapyxexus BI10. OnHako pa3paboTaHHbIii MeToZ B3aumogeii-
(TBMA BKNKOYAET BO3MOXHOCTb ONpefeneHna CoCTOAHNA pacnpeaeneHHol MHOroypoBHEBOI CUCTEMbI B 3aBUCUMOCTH OT
COCTOAHUI OTAENbHBIX MOAYNEN U Ha ero 0CHOBe N0 Hemy OYAYT NPUHIMATBLCA PeLLeHna 0 AanbHelilueil paboTe cACTEMb
B LeNOM 1 ee KoHdurypaumn. MeToa pernameHTUpyeT AeiCTBNA TOI YaCTh CUCTeMbl, KOTOpaA OTHOCUTCA K CBA3YHLLEMY
nporpaMmmHoMy obecneyennio pacnpeseneHHoil cuctembl. [poBefeHHble IKCMEPUMEHTbI MO UCMONb30BaHUI0 pa3pabo-
TaHHOI pacnpefeneHHoli CUCTeMbl NMOKa3anu BO3MOXKHOCTb NpuBNReYeHus K BbianeHuio BI10 BbIUMCINTENbHBIX MOLLHO-
creit gpyrux KC nokanbHoli ceT. MonyueHHble pe3ynbTaTbl IKCMEPUMEHTOB MOKA3bIBAKOT MOBbILIEHWE JOCTOBEPHOCTI
06Hapy»xeHna BIO.

Knroyesole cnoea: spedoHocHoe npoepammHoe obecneyeHue, pacnpedesieHHas MHO20ypOBHeBas cucmemd, deyeHm-
Panu3upo8aHHAs CUCMema, KOMNbIOMePHble CUCMeMbl, IOKA/bHASA cemb

JIITEPATYPA:

1. Security Response Publications. Monthly Threat Report. URL: https://www.symantec.com/security_response/publications/
monthlythreatreport.jsp. (Last accessed: 07.04.2019).

2. McAfee Labs. McAfee Labs Threat Report. December 2017. URL: https://www.mcafee.com /us/resources/reports/rp-quarterly-threats-dec-
2017.pdf (Last accessed: 07.04.2019).

91

10.

1.

12.

13.

14.

15.

16.

NPOBJIEMU IHOOPMALINHUX TEXHOOT IV

Overview of Symantec Endpoint Protection 12. Part 2. URL: https://www.anti-malware.ru/reviews/Symantec_Endpoint_Protection_12_2
(Last accessed: 07.04.2019).

Palo Alto Networks. URL: https://www.paloaltonetworks.com/ (Last accessed: 07.04.2019).

Malwarebytes Endpoint Security. URL: https://ru.malwarebytes.com/business/ endpointsecurity/ (Last accessed: 07.04.2019).

Cisco NAC Appliance (Clean Access). URL: https://www.cisco.com/c/en/us/products/ security/nac-appliance-clean-access/index.html (Last
accessed: 07.04.2019).

Comodo CyberSecurity. URL: https://www.comodo.com/ (Last accessed: 07.04.2019).

Branitskiy A., Kotenko I. Hybridization of computational intelligence methods for attack detection in computer networks. Journal of
Computational Science, 2017. No. 23. P. 145-156.

Bezobrazov S., Sachenko A., Komar M., Rubanau V. The methods of artificial intelligence for malicious applications detection in Android 0S.
International Journal of Computing, 2016. Vol. 15, No. 3. P. 184-190.

David B., Filiol E., Gallienne K. Structural analysis of binary executable headers for malware detection optimization. Journal of Computer Virology
and Hacking Techniques, 2017. Vol. 13, No. 2. P. 87-93.

Eslahi M., Abidin W. Z., Naseri M. V. Correlation-based HTTP Botnet detection using network communication histogram analysis. The 2077 IEEE
Conference on Application, Information and Network Security: Proceedings (Miri, Malaysia, November 13-14 2017). Miri, 2017. P. 7-12.

Pronoza A., Vitkova L., Chechulin A., Kotenko I. Visual Analysis of Information Dissemination Channels in Social Network for Protection Against
Inappropriate Content. The Third International Scientific Conference: Intelligent Information Technologies for Industry, Volume 2: Proceedings
(Sochi, Russia, September 17-212019). Sochi, 2019. P. 95-105.

Sun M., Xu G., Zhang J., Kim D. Tracking you through DNS traffic: Linking user sessions by clustering with Dirichlet mixture model. The 20th ACM
International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems: Proceedings (Miami, FL, US, November 24-26
2017). Miami, 2017. P. 303-310.

Schomp K., Rabinovich M., Allman M. Towards a model of DNS client behavior. International Conference on Passive and Active Network
Measurement, volume 9631: Proceedings (Heraklion, Crete, Greece, 31 March — 1 April 2016). Heraklion, 2016. P. 263-275.

Zheng J., Li Q., Gu G., Cao J., Yau D. KY, Wu J. RealtimeDDoS Defense Using COTS SDN Switches via Adaptive Correlation Analysis. IFEE
Transactions on Information Forensics and Security, 2018.Vol. 13, Issue 7. P. 1838—1853.

Markowsky G., Savenko 0., Sachenko A. Distributed Malware Detection System Based on Decentralized Architecture in Local Area Networks.
Advances in Intelligent Systems and Computing Ill, 2019. Vol. 871. P. 582-598.

92

