КОРРЕЛЯЦИОННАЯ ПАТЧ-КЛАМП-СПЕКТРОМЕТРИЯ ИОННЫХ КАНАЛОВ – СОЧЕТАНИЕ СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕКТРОФИЗИОЛОГИЧЕСКОГО ОТКЛИКА КАНАЛОМА В НЕЖЕСТКОМ РЕАЛЬНОМ ВРЕМЕНИ И МЕТОДОВ СПЕКТРОСКОПИИ ИОННЫХ КАНАЛОВ КАК КООРДИНАЦИОННЫХ(КОМПЛЕКСНЫХ) СТРУКТУР

Ф. К. Орехов, О. В. Градов

Анотація


Ионные каналы клеточных мембран работают в соответствии с принципами координационной химии. Известна доминирующая роль координационного числа в определении ионоселективности калиевых и натриевых каналов. Изучены лиганд-зависимые и лиганд-управляемые ионные каналы, работающие по принципу координационной супрамолекулярной фиксации. Каналообразующие ионофоры (т.н. «каналоформеры») формируют структуры, в которых катионы фиксируются связями координационного характера, в ходе чего меняется конформация комплекса; происходит подстройка координационных архитектур под селективность канала. Подобные нековалентные системы лежат в основе электрогенных функций мембран и регулируемых потенциалом систем трансмембранного переноса ионов. Эти системы могут быть охарактеризованы методами патч-кламп, т.е. локальной фиксации потенциала на мембране – известны техники «anion clamp», применяемые в корреляции с анализом геометрии координации ионов металлов ионными каналами. Однако эти техники не регистрируют конформационное состояние канала in situ – в момент координации иона – с точностью до молекулярной структуры канала В связи с этим возникает потребность создания динамических методов анализа, позволяющих одновременно регистрировать конформационные и металломные / элементомные характеристики координации и электрофизиологическую активность при координации. Нами предлагается создание спектроскопических систем для данных целей, при использовании которых электрофизиология и отклик отдельных каналов регистрируется методами локальной фиксации потенциала (patch-clamp / voltage-clamp) с расширенной спектральной обработкой (и data mining-ом результатов), а их состояние как координационных конформационно лабильных структур – спектроскопическими методами, причем в результате обработки получаются не спектры как таковые, но их характеристические для опознавания машинными методами коррелограммы.

Ключові слова


патч-кламп, локальная фиксация потенциала, спектральный анализ в реальном времени, координационная химия, ионные каналы, QSAR, QSPR, SBGN

Повний текст:

PDF

Посилання


Thomas M. et al. The predominant role of coordination number in potassium channel selectivity // Biophys. Journ. 2007. V. 93. № 8. P. 2635-2643.

Bucher D. et al. Coordination numbers of K+ and Na+ ions inside the selectivity filter of the KcsA potassium channel // Biophys. Journ. 2010. V. 98. № 10. P. L47-L49.

Young J.D. et al. Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel // Nature. 1983. № 5939. P. 186-189.

Muraoka T. et al. Reversible ion transportation switch by a ligand-gated synthetic supramolecular ion channel // J. Amer. Chem. Soc. 2014. V. 136. № 44. P. 15584-15595.

Ko Y.J., Jo W.H. Chloride ion conduction without water coordination in the pore of ClC protein // Journ. Comput. Chem. 2010. V. 31. № 3. P. 603-611.

Kowdley G.C. et al. Anion, cation, and zwitterion selectivity of phospholemman channel molecules // Biophys. Journ. 1997. V. 72. № 1. P. 141-145.

Varma S., Rempe S.B. Tuning ion coordination architectures to enable selective partitioning // Biophys. Journ. 2007. V. 93. № 4. P. 1093-1099.

Dai S. et al. Supramolecular assemblies and localized regulation of voltage-gated ion channels // Physiol. Rev. 2009. V. 89. № 2. P. 411-452.

Wang M. et al. "Anion clamp" allows flexible protein to impose coordination geometry on metal ions // Chem. Com. 2015. V. 51. P. 7867-7870.

Zhou Y. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution // Nature. 2001. № 6859. P. 43-48.

Nies D.H. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans // Metallomics. 2016. V. 8. № 5. P. 481-507.

Connors T.A. et al. Structure-activity relationships of the anti-tumor platinum coordination complexes // Canc. Treat. Rep. 1979. V. 63. №9-10. P. 1499-1502.

Millonas M., Hanck D. Nonequilibrium response spectroscopy of voltage-sensitive ion channel gating // Biophys. Journ. 1998. V. 74. № 1. P. 210-229.

Ma L. et al. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy // Appl. Spectrosc. 2013. V. 67. № 3. P. 283-290.

Jia Q et al. An insight into sequential order in two-dimensional correlation spectroscopy // Appl. Spectrosc. 2009. V. 63. № 3. P. 344-353.

Huang H. "Sequential order" rules in generalized two-dimensional correlation spectroscopy // Anal. Chem. 2007. V. 79. № 21. P. 8281-8292.

Jung Y.M. et al. New approach to generalized two-dimensional correlation spectroscopy {Part II}-{Part IV} // Appl. Spectrosc. 2003. V. 57. № 5. P. 557-570; Ibid. № 7. P. 850-857.

Orehov T.C., Gradov O.V. Hybridization of COBAC, QSPR / QSAR and SBGN technologies: The unity of theory and practice for biomedical technique design and biochemical diagnostic information analysis // Journ. Med. Bioeng., 2016. V. 5, № 2. P. 128–132.

Orehov F., Gradov O. In situ / real time analysis in frame of COBAC, QSPR, QSAR & SBGN as a novel tool for the biosimilarity studies and physio-chemical prognostics in the biomedicine-assisted screening & experimental toxicology & allergology // Journ. Bioanal. & Biomed. 2015. V. 7. № 5. P. 95.

Orehov F. C., Gradov O. V. On-line/real time compatibility of COBAC analysis, QSPR, QSAR and SBGN big data mining as a novel tool for physiochemical prognostics in the biomedicine-assisted screening and experimental toxicology and allergology // Journal of data mining in genomics & proteomics, 2015. V. 6, №. 4. P. 64.

Злоказов В.Б. Математические методы анализа экспериме-нтальных спектров и спектроподобных распределений // ФЭЧАЯ. 1985. Т. 16. №5. C. 1126-1163.

Reid D.G. et al. An electrophysiological and spectroscopic study of the properties and structure of biological calcium channels // Biochim. Biophys. Acta. 1992. V. 1106. № 2. P. 264-272.

Lu H.P. Combined single-molecule electrical recording and single-molecule spectroscopy studies of ion channel conformational dynamics // Meth. Cell Biol. 2008. V. 90. P. 435-451.

Han A., Frazier A.B. Ion channel characterization using single cell impedance spectroscopy // Lab Chip. 2006. V. 6. № 11. P. 1412-1414.

Huang W. et al. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy // Biophys. Journ. 2002. V. 83. № 6. P. 3245-3255.

Aslanian D. et al. A Raman spectroscopic study on the interaction of an ion-channel protein with a phospholipid in a model membrane system (gramicidin A/L-alpha-lysophosphatidylcholine) // Eur. Journ. Biochem. 1986. V. 160. № 2. P. 395-400.

Liu J. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe // Biophys. Journ. 2009. V. 96. № 10. P. 4176-4187.

Rusinova R. et al. Regulation of ion channel function by the host lipid bilayer examined by a stopped-flow spectrofluorometric assay // Biophys. Journ. 2014. V. 106. № 5. P. 1070-1078.

Stankovich L. et al. Atomic absorption spectroscopy in ion channel screening // Assay Drug Dev. Tech. 2004. № 5. P. 569-574.

Градов О.В. Патч-кламп-спектроскопия как потенциальный инструмент диагностирования в молекулярной онкологии и анализе активности ионных каналов как вероятных молекулярных мишеней // Успехи молекулярной онкологии, Т. 2. № 4. С. 66.

Yao H. et al. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System // Journ. Chem. Inform. Comp. Sci. 2004. V. 44. № 4. P. 1456-1465.

Reily M.D. et al. Nuclear magnetic resonance spectroscopy of peptide ion channel ligands: cloning and expression as aid to evaluation of structural and dynamic properties // Meth. Enzymol. 1999. V. 294. P. 92-117.

Abarca-Heidemann K. Isotope labeling strategies for analysis of an ion channel cytoplasmic domain by NMR spectroscopy // Meth. Mol. Biol. 2013. V. 998. P. 289-300.

Sudheendra U.S., Bechinger B. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy // Biochemistry. 2005. V. 44. № 36. P. 12120-12127.

Luo W., Hong M. Conformational changes of an ion channel detected through water-protein interactions using solid-state NMR spectroscopy // Journ. Amer. Chem. Soc. 2010. V. 132. № 7. P. 2378-2384.

Arseniev A.S. et al. 1H-NMR study of gramicidin A trans-membrane ion channel. Head-to-head right-handed, single-stranded helices // FEBS Lett. 1985. V. 186. № 2. P. 168-174.

Ovchinnikov Yu.A. Ion channels: structure and function // Biochem. Soc. Symp. 1981. № 46. P. 103-137.

Eads C.D., Noda I. Generalized correlation NMR spectroscopy // Journ. Amer, Chem. Soc. 2002. V. 124. № 6. P. 1111-1118.

Allen P.S. et al. Metabolite-specific NMR spectroscopy in vivo // NMR Biomed. 1997. V. 10. № 8. P. 435-444.

Frahm J. et al. Localized NMR spectroscopy in vivo. Progress and problems // NMR Biomed. 1989. V. 2. № 5-6. P. 188-195.

Soncini A., Calvello S. Room Temperature Chiral Discrimi-nation in Paramagnetic NMR Spectroscopy // Phys. Rev. Lett. 2016. V. 116. № 16. 163001.

Höfeler H. et al. Sodium transport and phosphorus metabolism in sodium-loaded yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo // Biochemistry. 1987. V. 26. № 16. P. 4953-4962.

Cheung E.Y. et al. Polymorphism of a novel sodium ion channel blocker. Journ. Pharm. Sci. 2003. V. 92. № 10. P. 2017-2026.

Iman M. et al. Docking studies of phthalimide pharmacophore as a sodium channel blocker // IJBMS. 2013. V. 16. № 9. P. 1016-1021.

Sheridan R.P. Global quantitative structure-activity relationship models vs selected local models as predictors of off-target activities for project compounds // Journ. Chem. Inf. Model. 2014. V. 54. № 4. P. 1083-1092.

Jones M.M., Conner W.E. Coordination, Ligand Reactivity, and Catalysis // Ind. Eng. Chem., 1963, V. 55. № 9, P. 14–28.

Zhu Y. et al. Effect of electron-density discontinuity on magnetotransport in multiprobe narrow-channelstructures // Phys. Rev. B: Cond. Mat. 1990. V. 41. № 12. P. 8509-8512.

Tikhonova I.G. et al. 3D-model of the ion channel of NMDA receptor: qualitative and quantitative modeling of the blocker binding // Dokl Biochem. Biophys. 2004. V. 396. P. 181-186.

Li Y. et al. A review of molecular modeling approaches to pharmacophore models and structure-activity relationships of ion channel modulators in CNS // Curr. Pharm. Des. 2002. V. 8. № 2. P. 99-110.

Matta C., Arabi A. Electron-density descriptors as predictors in quantitative structure-activity/property relationships and drug design // Fut. Med. Chem. 2011. V. 3. № 8. P. 969-994.

Moriello A.S. et al. Chalcone derivatives activate and desensitize the transient receptor potential ankyrin 1 cation channel, subfamily A, member 1 TRPA1 ion channel: structure-activity rela-tionships in vitro and anti-nociceptive and anti-inflammatory activity in vivo // CNS Neur. Dis. Drug. Targ. 2016 {in press}.

Varkevisser R. et al. Structure-activity relationships of pentamidine-affected ion channel trafficking and dofetilide mediated rescue // Br. Jourm. Pharm. 2013. V. 169. №6. P.1322-1334.

Arias H.R. et al. Noncompetitive antagonist binding sites in the torpedo nicotinic acetylcholine receptor ion channel. Structure-activity relationship studies using adamantane derivatives // Biochemistry. 2003. V. 42. № 24. P. 7358-7370.

Albuquerque E.X. et al. Structure-activity relationship of reversible cholinesterase inhibitors: activation, channel blockade and stereospecificity of the nicotinic acetylcholine receptor-ion channel complex // Br. Journ. Med. Biol. Res.1988. V. 21. № 6. P. 1173-1196.

Riviere J.E., Brooks J.D. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used // Toxic. Sci. 2011. V. 119. № 1. P. 224-232.

Rayne S, Forest K. Quantitative structure-activity relationship (QSAR) studies for predicting activation of the ryanodine receptor type 1 channel complex (RyR1) by polychlorinated biphenyl (PCB) congeners // J. Envir. Sci. Heal. A. 2010. V. 45. № 3. P. 355-362.

Орехов Ф.К., Градов О.В. Гибридизация COBAC, QSPR/QSAR и SBGN: единство теории и практики в анализе данных и проектировании спектрально-биохимического лабораторно-диагностического и биомедицинского оборудования // Биотехносфера. 2014. T. 33, Вып. 3, С. 29-31.

Zhu J. et al. Magnesium-selective ion-channel mimetic sensor with a traditional calcium ionophore // Anal. Chem. 2010. V. 82. № 1. P. 436-440.

Guo W. et al. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores //Acc. Chem. Res. 2013. V. 46. № 12. P. 2834-2846.

Aoki H. et al. Ion-channel sensors based on ETH 1001 ionophore embedded in charged-alkanethiol self-assembled monolayers on gold electrode surfaces // Anal. Sci. 2006. V. 22. № 12. P. 1581-1584.

Reith M.E., O'Reilly C.A. Inhibition of serotonin uptake into mouse brain synaptosomes by ionophores and ion-channelagents // Brain Res. 1990. V. 521. № 1-2. P. 347-351.

Durkin J.T. et al. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence // J. Mol. Biol. 1990. V. 211. №1. P. 221-234.

Brancato G., Barone V. Free energy landscapes of ion coordination in aqueous solution // J. Phys. Chem B. 2011. V. 115. №44. P. 12875-12878.

Walker J.D. et al. Fundamental QSARs for Metal Ions // “CRC Press”, Boca Raton – London – New York, 2012 г., 302 p.

Bühler S. et al. Mass spectrometric mapping of ion channel proteins (porins) and identification of their supramolecular membrane assembly // Proteins. 1998. Suppl. 2. P. 63-73.

Sánchez-Quesada J. et al. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies // J. Am. Chem. Soc. 2002. V. 124. №34. P. 10004-10005.

Kurata H.T. et al. Voltage-dependent gating in a "voltage sensor-less" ion channel // PLoS Biol. 2010. V. 8. № 2. Art. No. e1000315. [DOI: 10.1371/journal.pbio.1000315].

Zaytsev E.V. et al. Conventional patch-clamp techniques for multi-channel lab-on-a-chip signal registration from cell culture using real time target machine interfaces and in situ real-time digital signal processing // Proc. Int. Workshop “Structure and Functions of Biomembranes”, Dolgoprudny, 2014, P. 158-159.

Alexandrov P. et al. Simultaneous in situ detection of the optical fluorescence, fluorescence recovery kinetics after photobleaching & membrane ion flux on the electrophysiological lab-on-a-chip // American Journal of Optics and Photonics. 2015. V. 3. №5. P. 118-122.

Александров П. Л., Градов О. В. Конвенционные патч-кламп-автоматы с обратной связью для многофакторных лабораторий на чипе с использованием интерфейсов вычисительных машин реального времени // Биотехносфера. 2014. Т. 3, № 33. С. 13-17.

Градов О.В. "Многофакторная патч-кламп-спектроскопия" как метод анализа процессов сигнализации и регуляции клеточных функций ионными каналами // Цитология. 2015. Т. 57, № 9, С. 625-626

Градов О.В. Многофакторная патч-кламп-спектроскопия как метод характеризации сигнальных систем растений и источник комплементарных систематических дескрипторов для биохимической таксономии с привязкой к биогеографическим картам и данным корреляционной феноспектральной ауксанометрии // Сигнальные системы растений: от рецептора до ответной реакции организма. — Изд-во Санкт-Петербургского государственного университета СПб, 2016. — С. 79–81.

Градов О.В. Радиоавтографически-детектирующий локальный патч-кламп как метод онкоцитологического анализа (на примере HeLa) // IX Съезд онкологов и радиологов СНГ и Евразии. — 2016. - P66.

Градов О.В. Граммометрические лаборатории на чипе и синхронизация граммометрии на чипе на изолированном мышечном волокне с рентгеноструктурным анализом ткани in situ и MEMS-опосредованной спектроскопией времен возбуждения // Вестник новых медицинских технологий. 2015. Т. 22. № 3. С. 153-160.

Adamovič E.D., Gradov O.V. Joint Fourier and non-Fourier spectral / pseudo-spectral approach to the lung bioacoustics and biomedical signal fingerprinting as a way to increase the quality of the lung diagnostics using supercomplex hybridization of different DSP methods // Journal of Biomedical Technologies. 2015. № 1. C. 35-38.

Henriksen G.H., Assmann S.M. Laser-assisted patch clamping: a methodology // Pflugers Arch. 1997. V. 433. № 6. P. 832-841.

Престон К. Когерентные оптические вычислительные машины // М., «Мир», 1974. – 402 с.

Акаев А.А., Майоров С.А. Когерентные оптические вычислительные машины // Л., «Машиностроение», 1977. - 440 с.

Datta A.K. et al. Arithmetic operations in optical computations using a modified trinary number system // Opt. Lett. 1989. V. 14. № 9. P. 426-428.

Gradov O.V., Gradova M.A. On the possibility of "MS-patch-clamp" or mass spectrometry hybridization with patch-clamp setups for single cell metabolomics and channelomics // Proc. Int. Workshop “Structure and Functions of Biomembranes” Dolgoprudny, 2014, P. 105.

Gradov O., Gradova M. "MS-patch-clamp" or the possibility of mass spectrometry hybridization with patch-clamp setups for single cell metabolomics and channelomics // Advances in Biochemistry. — 2015. — Vol. 3. — P. 66–71

Вершинин В.И. и др. Компьютерная идентификация органических соединений // М., «Академкнига», 2002. 197 с.

Katayama T. et al. Quantitative structure-hydrophobicity and structure-activity relationships of antibacterial gramicidin S analogs // J. Pharm. Sci. 1994. T. 83. № 9. P. 1357-1362.

Shemyakin M.M. et al. The structure-antimicrobial relation for valinomycin depsipeptides // Experientia. 1965. V. 21. № 9. P. 548-552.

Ruthstein S. et al. Pulsed electron spin resonance resolves the coordination site of Cu(2+) ions in α1-glycine receptor // Biophys. Journ. 2010. V. 99. № 8. P. 2497-2506.

Zhou Y. et al. Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications // Proc. Nat. Acad. Sci. USA. 2015. V. 112. № 16. P. 5237-5242.

Tang Q.Y. et al. Structural determinants of phosphatidylinositol 4,5-bisphosphate (PIP2) regulation of BK channel activity through the RCK1 Ca2+ coordination site // J. Biol. Chem. 2014. V. 289. № 27. P. 18860-18872.

Liu K. et al. Rb+ efflux assay for assessment of non-selective cation channel activities // Ass. Drug Dev. Tech. 2010. V. 8. № 3. P. 380-388.

Sackin H. et al. A conserved arginine near the filter of Kir1.1 controls Rb/K selectivity // Channels. 2010. V. 4. № 3. P. 203-214.

Marshall A.T., Clode P.L. X-ray microanalysis of Rb+ entry into cricket Malpighian tubule cells via putative K+ channels // J. Exp. Biol. 2009. V. 212. № 18. P. 2977-2982.

Kuras Z., Grissmer S. Effect of K+ and Rb+ on the action of verapamil on a voltage-gated K+ channel, hKv1.3: implications for a second open state? // Br. J. Pharmac. 2009. V. 157. № 5. P. 757-768.

Ohsaga A. et al. Asymmetry of Rb+ conduction emerged under bi-ionic conditions in epithelial maxi-K+ channels // J. Physiol. Sci. 2008. V. 58. № 6. P. 363-369.

Vereninov A.A et al. Pump and channel K (Rb+) fluxes in apoptosis of human lymphoid cell line U937 // Cell Physiol. Biochem. 2008. V. 22. № 1-4. P. 187-194.

Boccaccio A. et al. Binding of kappa-conotoxin PVIIA to Shaker K+ channels reveals different K+ and Rb+ occupancies within the ion channel pore // J. Gen. Physiol. 2004. V. 124. № 1. P. 71-81.

Gusev G.P. et al. Potassium channels of the lamprey erythrocyte membrane exhibit a high selectivity to K+ over Rb+: a comparative study of 86Rb and 41K transport // Gen. Physiol. Biophys. 1997. V. 16. № 3. P. 273-284.

Pennefather P.S., DeCoursey T.E. A scheme to account for the effects of Rb+ and K+ on inward rectifier K channels of bovine artery endothelial cells // J. Gen. Physiol. 1994. V. 103. № 4. P. 549-581.

Silver M.R. et al. Effects of external Rb+ on inward rectifier K+ channels of bovine pulmonary artery endothelial cells // J. Gen. Physiol. 1994. V. 103. № 4. P. 519-524.

Kirsch G.E. et al. A single nonpolar residue in the deep pore of related K+ channels acts as a K+:Rb+ conductance switch // Biophys J. 1992. V. 62. № 1. P. 136-144.

Sala S., Matteson D.R. Voltage-dependent slowing of K channel closing kinetics by Rb+ // J. Gen. Physiol. 1991. V. 98. № 3. P. 535-554.

Longmore J. et al. The contribution of Rb-permeable potassium channels to the relaxant and membrane hyperpolarizing actions of cromakalim, RP49356 and diazoxide in bovine tracheal smooth muscle // Br. J. Pharmacol. 1991. V. 102. № 4. P. 979-985.

Otero A.S., Szabo G. Role of the sodium pump and the background K+ channel in passive K+(Rb+) uptake by isolated cardiac sarcolemmal vesicles // J. Membr. Biol. 1988. V. 104. № 3. P. 253-263.

Swenson R.P., Armstrong C.M. K+ channels close more slowly in the presence of external K+ and Rb+ // Nature. 1981. V. 291. № 5814. P. 427-429.

Thompson G.A. et al. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+ // J. Physiol. 2000. V. 526. Pt 2. P. 231-240.

Matsuda H. Rb+, Cs+ ions and the inwardly rectifying K+ channels in guinea-pig ventricular cells // Pflug. Arch. 1996. 432. № 1. P. 26-33.

Mitra R.L., Morad M. Permeance of Cs+ and Rb+ through the inwardly rectifying K+ channel in guinea pig ventricular myocytes // J. Membr. Biol. 1991. V . 122. № 1. P. 33-42.

Hadley R.W., Hume J.R. Permeability of time-dependent K+ channel in guinea pig ventricular myocytes to Cs+, Na+, NH4+, and Rb+ // Am. Journ. Physiol. 1990. V. 259. 5. Pt 2. P. H1448-H1454.

Matsuda H. et al. Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs+ and Rb+ block in guinea-pig heart cells // J. Physiol. 1989. V. 413. P. 139-157.

Caffier G., Shvinka N.E. The effect of Rb+, Cs+, and T1+ on the gramicidin A-induced conductance changes of the skeletal muscle cell membrane // Acta Biol. Med. Ger. 1982. V. 41. № 11. P. 1087-1090.

Broadley M.R. et al. Influx and accumulation of Cs(+) by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K(+) transport system // J. Exp. Bot. 2001. V. 52. № 357. P. 839-844.

Dibb K.M. et al. Cs+ block of the cardiac muscarinic K+ channel, GIRK1/GIRK4, is not dependent on the aspartate residue at position 173 // Pflug. Arch. 2000. V. 440. № 5. P. 740-744.

Ichida A.M. et al. Expression of a Cs(+)-resistant guard cell K+ channel confers Cs(+)-resistant, light-induced stomatal opening in transgenic Arabidopsis // Plant Cell. 1997. V. 9. № 10. P. 1843-1857.

Trequattrini C. et al. Characterization of a neuronal delayed rectifier K current permeant to Cs and blocked by verapamil // J. Membr. Biol. 1996. V. 154. № 2. P. 143-153.

Maathuis F.J., Sanders D. Characterization of csi52, a Cs+ resistant mutant of Arabidopsis thaliana altered in K+ transport // Plant J. 1996. V. 10. № 4. P. 579-589.

Becker D. et al. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+channel KAT1 // Proc. Nat. Acad. Sci. USA. 1996. V. 93. № 15. P. 8123-8128.

Erostegui C. et al. Acetylcholine activates a K+ conductance permeable to Cs+ in guinea pig outer hair cells // Hear Res. 1994. V. 81. № 1-2. P. 119-129.

Draber S., Hansen U.P. Fast single-channel measurements resolve the blocking effect of Cs+ on the K+ channel // Biophys. J. 1994. V. 67. № 1. P. 120-129.

De Biasi M. et al. Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore // Biophys. J. 1993. V. 65. № 3. P. 1235-1242.

De Wolf I., Van Driessche W. Current-voltage relations of Cs+-inhibited K+ currents through the apical membrane of frog skin // Pflug. Arch. 1988. V. 413. № 2. P. 111-117.

Cecchi X. et al. Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle // Biophys. J. 1987. V. 52. № 5. P. 707-716.

Senyk O. External [K+] and the block of the K+ inward rectifier by external Cs+ in frog skeletal muscle // Biophys. J. 1986. V. 50. № 4. P. 677-683.

Cukierman S. et al. The K+ channel of sarcoplasmic reticulum. A new look at Cs+ block // Biophys. J. 1985. V. 48. № 3. P. 477-484.

Clay J.R. Comparison of the effects of internal TEA+ and Cs+ on potassium current in squid giant axons // Biophys. J. 1985. V. 48. № 6. P. 885-892.

Argibay J.A. et al. Block by Cs of K current iK1 and of carbachol induced K current iCch in frog atrium // Pflug. Arch. 1983. V. 397. № 4. P. 295-299.

Gay L.A., Stanfield P.R. Cs(+) causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres // Nature. 1977. V. 267. № 5607. P. 169-170.

Quigley E.P. et al. Gating and permeation in ion channels formed by gramicidin A and its dioxolane-linked dimer in Na(+) and Cs(+) solutions // J. Membr. Biol. 2000. V. 174. № 3. P. 207-212.

Etchebest C., Pullman A. Energy profile of Cs+ in gramicidin A in the presence of water. Problem of the ion selectivity of the channel // J. Biomol. Struct. Dyn. 1988. V. 5. № 5. P. 1111-125.

Etchebest C. et al. The gramicidin A channel: comparison of the energy profiles of Na+, K+ and Cs+. Influence of the flexibility of the ethanolamine end chain on the profiles // FEBS Lett. 1984. V. 173. № 2. P. 301-316.

O'Connell A.D. et al. Selectivity and interactions of Ba2+ and Cs+ with wild-type and mutant TASK1 K+ channels expressed in Xenopus oocytes // J. Physiol. 2005. V. 562. Pt 3. P. 687-696.

Bolter C.P. et al. Failure of Ba2+ and Cs+ to block the effects of vagal nerve stimulation in sinoatrial node cells of the guinea-pig heart // Auton. Neurosci. 2001. V. 94. № 1-2. P. 93-101.

Van Driessche W., De Wolf I. Microelectrode study of voltage-dependent Ba2+ and Cs+ block of apical K+ channels in the skin of Rana temporaria // Pflug. Arch. 1991. V. 418. № 4. P. 400-407.

Baba K. et al. Effects of verapamil on the contractions of guinea-pig tracheal muscle induced by Ca, Sr and Ba // Br. J. Pharmacol. 1985. V. 84. № 1. P. 203-211.

Hagiwara S. et al. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp // J. Gen. Physiol. 1974. V. 63. № 5. P. 564-578.

Hsieh C.P. et al. Driving force-dependent block by internal Ba(2+) on the Kir2.1 channel: Mechanistic insight into inward rectification // Biophys. Chem. 2015. V. 202. P. 40-57.

Kehl S.J. et al. External Ba(2+) block of Kv4.2 channels is enhanced in the closed-inactivated state // Amer. J. Physiol. Cell Physiol. 2013. V. 304. № 4. P. C370-C381.

Murata Y. et al. Identification of a site involved in the block by extracellular Mg(2+) and Ba(2+) as well as permeation of K(+) in the Kir2.1 K(+) channel // J. Physiol. 2002. V. 544. Pt 3. P. 665-677.

Alagem N. et al. Mechanism of Ba(2+) block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues // J. Physiol. 2001. V. 534. Pt. 2. P. 381-393.

Wang X.Y. et al. Ba(2+)-sensitive K+ channels in basal membrane of confluent Madin-Darby canine kidney cells // Am. Journ. Physiol. 1994. V. 267. №6. Pt 2. P. F1007-F1014.

Zeiske W., Marin H. K+ current stimulation by Cl- in the midgut epithelium of tobacco hornworm (Manduca sexta). II. Analysis of Ba(2+)-induced K+ channel conduction noise // J. Comp. Physiol. B. 1992. V. 162. №4. P. 340-344.

Klöckner U. et al. L-type Ca-channels: similar Q10 of Ca-, Ba- and Na-conductance points to the importance of ion-channel interaction // Pflug. Arch. 1990. V. 415. № 5. P. 638-641.

Miller C. et al. Coupling of voltage-dependent gating and Ba++ block in the high-conductance, Ca++-activated K+channel // J. Gen. Physiol. 1987. V. 90. № 3. P. 427-449.

Cens T. et al. Molecular determinant for specific Ca/Ba selectivity profiles of low and high threshold Ca2+channels // J. Gen. Physiol. 2007. V. 130. № 4. P. 415-425.

Lopin K.V. et al. Evaluation of a two-site, three-barrier model for permeation in Ca(V)3.1 (alpha1G) T-type calciumchannels: Ca (2+), Ba (2+), Mg (2+), and Na (+) // J. Membr. Biol. 2010. V. 235. № 2. P. 131-143.

Li Z. et al. A single amino acid change in Ca(v)1.2 channels eliminates the permeation and gating differences between Ca(2+) and Ba(2+) // J. Membr. Biol. 2010. V. 233. № 1-3. P. 23-33.

Serrano J.R. et al. Mg(2+) block unmasks Ca(2+)/Ba(2+) selectivity of alpha1G T-type calcium channels // Biophys. J. 2000. V. 79. № 6. P. 3052-3062.

Korotkov S.M. et al. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria // J. Bioenerg. Biomembr. 2015. V. 47. № 3. P. 243-254.

Jørgensen S. et al. A high-throughput screening campaign for detection of Ca(2+)-activated K(+) channel activators and inhibitors using a fluorometric imaging plate reader-based Tl(+)-influx assay // Assay Drug Dev. Technol. 2013. V. 11. № 3. P. 163-172.

Bowman A.M. et al. Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake // J. Membr. Biol. 2010. V. 236. № 1. P. 15-26.

Jørgensen S. et al. Fluorescence-based Tl(+)-influx assays as a novel approach for characterization of small-conductance Ca(2+)-activated K (+) channel modulators // Meth. Mol. Biol. 2008. V. 491. P. 257-266.

Brismar T. et al. Mechanism of high K+ and Tl+ uptake in cultured human glioma cells // Cell Mol. Neurobiol. 1995. V. 15. № 3. P. 351-360.

Zeiske W., Van Driessche W. Impairment of Na+ transport across frog skin by Tl+: effects on turnover, area density and saturation kinetics of apical Na+ channels // Pflug. Arch. 1986. V. 407. № 2. P. 145-152.

Sessler M.J. et al. New aspects of cellular thallium uptake: Tl+-Na+-2Cl(-)-cotransport is the central mechanism of ion uptake // Nuklearmedizin. 1986. V. 25. № 1. P. 24-27.

Fox J., Ciani S. Experimental and theoretical studies on Tl+ interactions with the cation-selective channel of the sarcoplasmic reticulum // J. Membr. Biol. 1985. V. 84. № 1. P. 9-23.

Edwards C., Vyskocil F. The effects of the replacement of K+ by Tl+, Rb+, and NH+4 on the muscle membrane potential // Gen. Physiol. Biophys. 1984. V. 3. № 3. P. 259-264.

Dani J.A., Levitt D.G. Binding constants of Li+, K+, and Tl+ in the gramicidin channel determined from water permeability measurements // Biophys. J. 1981. V. 35. № 2. P. 485-499.

Hagiwara S. et al. Anomalous permeabilities of the egg cell membrane of a starfish in K+-Tl+ mixtures // J. Gen. Physiol. 1977. V. 70. № 3. P. 269-281.

Thompson A.N. et al. Mechanism of potassium-channel selectivity revealed by Na(+) and Li(+) binding sites within the KcsA pore // Nat. Struct. Mol. Biol. 2009. V. 16. № 12. P. 1317-1324.

Manthey A.A. Weakening of ion-channel interactions of Na+ and Li+ in acetylcholine-receptor channels of frog skeletal muscle with an increase in agonist concentration // Pflug. Arch. 1998. V. 435. № 6. P. 818-826.

Beblo D.A., Veenstra R.D. Monovalent cation permeation through the connexin40 gap junction channel. Cs, Rb, K, Na, Li, TEA, TMA, TBA, and

effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3 // J. Gen. Physiol. 1997. V. 109. № 4. P. 509-522.

Hansen G., Ulbricht W. Influence of Na+ and Li+ ions on the kinetics of sodium channel block by tetrodotoxin and saxitoxin // Pflug. Arch. 1991. V. 419. № 6. P. 588-595.

Palmer L.G., Frindt G. Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of luminal Na and Li // J. Gen. Physiol. 1988. V. 92. № 1. P. 121-138.

Ussing H.H. Odd behaviour of Li+ in frog skin ion transport // Comp. Biochem. Physiol. A: Comp. Physiol. 1988. V. 90. № 4. P. 525-529.

Kahn A.M. Difference between human red blood cell Na+-Li+ countertransport and renal Na+-H+ exchange // Hypertension. 1987. V. 9. № 1. P. 7-12.

Hannaert P.A., Garay R.P. A kinetic analysis of Na-Li countertransport in human red blood cells // J. Gen. Physiol. 1986. V. 87. № 3. P. 353-368.

Nagata C., Aida M. Ab initio molecular orbital study of the interaction of Li+, Na+ and K+ with the pore components of ion channels: consideration of the size, structure and selectivity of the pore of the channels // J. Theor. Biol. 1984. V. 110. № 4. P. 569-585.

Bernhardt J., Neumann E. Single channel gating events in tracer flux experiments. III. Acetylcholine receptor-controlled Li+ efflux from sealed Torpedo marmorata membrane fragments // Biophys. Chem. 1982. V. 15. № 4. P. 327-341.

Pereira F. et al. QSAR-assisted virtual screening of lead-like molecules from marine and microbial natural sources for antitumor and antibiotic drug discovery // Molecules. 2015. V. 20. № 3. P. 4848-4873.


Посилання

  • Поки немає зовнішніх посилань.