МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ВОДОРОДНОГО КАТАЛІЗУ У БІОЛОГІЧНИХ СИСТЕМАХ
Анотація
Ключові слова
Повний текст:
PDFПосилання
Winful H. G. Tunneling Time, the Hartman Effect, and Superluminality: A Proposed Resolution of an Old Paradox. Physics Reports. 2006. Vol. 436. P. 1–69.
Buttiker M., Landauer R. Traversal Time for Tunneling. Physical Review Letters. 1982. Vol. 49. № 23. P. 1739–1742.
Antoniou D., Schwartz S.D. Internal Enzyme Motions as a Source of Catalytic Activity: Rate-Promoting Vibrations and Hydrogen Tunneling. Journal of Physical Chemistry B. 2001. Vol. 105. P. 5553–5558.
Craven G. T., Nitzan A. Electron Transfer across a Thermal Gradient. PNAS. 2016. Vol. 113(34). P. 9421– 9429.
Klinman JP., Kohen A. Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis. Annual Review Biochem. 2013. Vol. 82. P. 471–496.
Dubinko V. I., Laptev D. V. Chemical and Nuclear Catalysis Driven by Localized Anharmonic Vibrations. Letters on Materials. 2016. Vol. 6 (1) P. 16–21.
Winful, H. G. (2006). Tunneling Time, the Hartman Effect, and Superluminality: A Proposed Resolution of an Old Paradox. Physics Reports. 436, 1–69.
Buttiker, M., & Landauer, R. (1982). Traversal Time for Tunneling. Physical Review Letters. 49, 23, 1739–1742.
Antoniou, D., & Schwartz, S. D. (2001). Internal Enzyme Motions as a Source of Catalytic Activity: Rate-Promoting Vibrations and Hydrogen Tunneling. Journal of Physical Chemistry B. 105, 5553–5558.
Craven, G. T., & Nitzan, A. (2016). Electron Transfer across a Thermal Gradient. PNAS. 113(34), 9421– 9429.
Klinman, JP., & Kohen, A. (2013). Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis. Annual Review Biochem. 82, 471–496.
Dubinko, V. I., & Laptev, D. V. (2016). Chemical and Nuclear Catalysis Driven by Localized Anharmonic Vibrations. Letters on Materials. 6 (1), 16–21.
DOI: https://doi.org/10.32782/2618-0340/2020.1-3.6
Посилання
- Поки немає зовнішніх посилань.
This work is licensed under a Creative Commons Attribution 4.0 International License